【转】在E-MapReduce中使用 ES-Hadoop
(本文转自E-MapReduce产品文档,详情请访问:阿里云E-MapReduce产品文档。)
ES-Hadoop 是 Elasticsearch(ES) 推出的专门用于对接 Hadoop 生态的工具,使得用户可以使用 Mapreduce(MR)、Spark、Hive 等工具处理 ES 上的数据(ES-Hadoop 还包含另外一部分:将 ES 的索引 snapshot 到 HDFS,对于该内容本文暂不讨论)。
背景
众所周知,Hadoop 生态的长处是处理大规模数据集,但是其缺点也很明显,就是当用于交互式分析时,查询时延会比较长。而 ES 是这方面的好手,对于很多查询类型,特别是 ad-hoc 查询,基本可以做到秒级。ES-Hadoop 的推出提供了一种组合两者优势的可能性。使用 ES-Hadoop,用户只需要对自己代码做出很小的改动,

低调大师中文资讯倾力打造互联网数据资讯、行业资源、电子商务、移动互联网、网络营销平台。
持续更新报道IT业界、互联网、市场资讯、驱动更新,是最及时权威的产业资讯及硬件资讯报道平台。
转载内容版权归作者及来源网站所有,本站原创内容转载请注明来源。
- 上一篇
阿里巴巴为什么选择Apache Flink?
本文作者:王峰(花名:莫问) 导读:伴随着海量增长的数据,数字化时代的未来感扑面而至。不论是结绳记事的小数据时代,还是我们正在经历的大数据时代,计算的边界正在被无限拓宽,而数据的价值再也难以被计算。时下,谈及大数据,不得不提到热门的下一代大数据计算引擎Apache Flink(以下简称Flink)。本文将结合Flink的前世今生,从业务角度出发,向大家娓娓道来:为什么阿里选择了Flink? 本文主要整理自阿里巴巴计算平台事业部资深技术专家莫问在云栖大会的演讲。 合抱之木,生于毫末 随着人工智能时代的降临,数据量的爆发,在典型的大数据的业务场景下数据业务最通用的做法是:选用批处理的技术处理全量数据,采用流式计算处理实时增量数据。在绝大多数的业务场景之下,用户的业务逻辑在批处理和流处理之中往往是相同的。但是,用户用于批处理和流处理的两套计算
- 下一篇
DKHadoop大数据平台架构详解
大数据的时代已经来了,信息的爆炸式增长使得越来越多的行业面临这大量数据需要存储和分析的挑战。Hadoop作为一个开源的分布式并行处理平台,以其高拓展、高效率、高可靠等优点越来越受到欢迎。这同时也带动了hadoop商业版的发行。这里就通过大快DKhadoop为大家详细介绍一下hadoop大数据平台架构内容。 目前国内的商业发行版hadoop除了大快DKhadoop以外还有像华为云等。虽然发行方不同,但在平台架构上相似,这里就以我比较熟悉的dkhadoop来介绍。 1ã 大快Dkhadoop,可以说是集成了整个HADOOP生态系统的全部组件,并对其进行了深度优化,重新编译为一个完整的更高性能的大数据通用计算平台,实现了各部件的有机协调。因此DKH相比开源的大数据平台,在计算性能上有了非常高的提升。这一点也是个人觉得dkhadoop比我之前使用的另外一个商业发行版的要好的,国内的大部分商业发行版hadoop可以说都是二次包装,dkhadoop做的好的就是敢在原生态的基础上进行开发。 2ã 大快DKhadoop中间件技术把大数据集群配置简化成三种节点,这样不仅简化了集群的管理运维,还...
相关文章
文章评论
共有0条评论来说两句吧...
文章二维码
点击排行
推荐阅读
最新文章
- Hadoop3单机部署,实现最简伪集群
- SpringBoot2更换Tomcat为Jetty,小型站点的福音
- Windows10,CentOS7,CentOS8安装Nodejs环境
- CentOS7编译安装Cmake3.16.3,解决mysql等软件编译问题
- Docker快速安装Oracle11G,搭建oracle11g学习环境
- 设置Eclipse缩进为4个空格,增强代码规范
- SpringBoot2全家桶,快速入门学习开发网站教程
- CentOS关闭SELinux安全模块
- CentOS7,8上快速安装Gitea,搭建Git服务器
- CentOS7,CentOS8安装Elasticsearch6.8.6