首页 文章 精选 留言 我的
优秀的个人博客,低调大师

微信关注我们

原文链接:https://yq.aliyun.com/articles/182803

转载内容版权归作者及来源网站所有!

低调大师中文资讯倾力打造互联网数据资讯、行业资源、电子商务、移动互联网、网络营销平台。持续更新报道IT业界、互联网、市场资讯、驱动更新,是最及时权威的产业资讯及硬件资讯报道平台。

Spark Streaming vs. Kafka Stream 哪个更适合你

译者注:本文介绍了两大常用的流式处理框架,Spark Streaming和Kafka Stream,并对他们各自的特点做了详细说明,以帮助读者在不同的场景下对框架进行选择。以下是译文。流式处理的需求每天都在增加,仅仅对大量的数据进行处理是不够的。数据必须快速地得到处理,以便企业能够实时地对不断变化的业务环境做出反应。流式处理是持续而又并发地对数据进行实时处理。流式处理是处理数据流或传感器数据的理想平台,而“复杂事件处理”(CEP)则利用了逐个事件处理和聚合等技术。对于实时数据处理功能,我们有很多选择可以来实现,比如Spark、Kafka Stream、Flink、Storm等。在这个博客中,我将讨论Apache Spark和Kafka Stream的区别。 Apache Spark Apache Spark是大规模数据处理的通用框架,支持多种不同的编程语言和概念,例如MapReduce、内存处理、流式处理、图形处理和机器学习。它也可以用于Hadoop的顶层。数据可以从多种来源(例如Kafka、Flume、Kinesis或TCP套接字)获取,并且使用一些复杂的算法(高级功能,例如映射、归...

数据蒋堂 | 开放的计算能力为数据库瘦身

我们在上一期谈到,数据库的臃肿,也就是过多的中间表以及相关存储过程,是由于其计算封闭性造成的。如果能够实现独立的计算引擎,使计算不再依赖于数据库提供,那么就可以为数据库瘦身了。 内部来源的中间数据不必再以数据表的形式落地在数据库中,而可以放到文件系统中,由外部计算引擎提供进一步的计算能力。对于只读的中间数据,使用文件存储时不需要考虑再改写,可以更为紧致并采用一定的压缩手段,而且在访问时也不必考虑事务一致性,机制大为简化,这样能获得比数据库更好的吞吐性能。文件系统还可以采用树形组织方案,将各个应用(模块)的中间数据分类管理好,使其更加方便,并且可使中间数据将从属于应用模块,不会被其它模块访问到。当有模块修改或下线时,相应的中间数据可以跟随修改,而不必担心被共享而产生的耦合问题。用于生成中间数据的存储过程也可以移到数据库外部,作为应用程

相关文章

发表评论

资源下载

更多资源
优质分享App

优质分享App

近一个月的开发和优化,本站点的第一个app全新上线。该app采用极致压缩,本体才4.36MB。系统里面做了大量数据访问、缓存优化。方便用户在手机上查看文章。后续会推出HarmonyOS的适配版本。

Mario

Mario

马里奥是站在游戏界顶峰的超人气多面角色。马里奥靠吃蘑菇成长,特征是大鼻子、头戴帽子、身穿背带裤,还留着胡子。与他的双胞胎兄弟路易基一起,长年担任任天堂的招牌角色。

Oracle

Oracle

Oracle Database,又名Oracle RDBMS,或简称Oracle。是甲骨文公司的一款关系数据库管理系统。它是在数据库领域一直处于领先地位的产品。可以说Oracle数据库系统是目前世界上流行的关系数据库管理系统,系统可移植性好、使用方便、功能强,适用于各类大、中、小、微机环境。它是一种高效率、可靠性好的、适应高吞吐量的数据库方案。

JDK

JDK

JDK是 Java 语言的软件开发工具包,主要用于移动设备、嵌入式设备上的java应用程序。JDK是整个java开发的核心,它包含了JAVA的运行环境(JVM+Java系统类库)和JAVA工具。