1 绘制条形图
import matplotlib
from matplotlib import pyplot as plt
matplotlib.rcParams["font.sans-serif"] = ["simhei"]
matplotlib.rcParams["font.family"] = "sans-serif"
'''
left, x轴
height, y轴
width=0.8 ,轴宽
'''
plt.bar([1], [123], label="广州", color="r")
plt.bar([2], [141], label=u"北京")
plt.bar([3], [11], label=u"上海")
plt.bar([4], [41], label=u"深圳")
plt.bar([5], [181], label=u"香港")
plt.legend()
plt.savefig("1.jpg")
2 绘制智联招聘职位岗位数量图
import urllib.request
import urllib.parse
import re
import matplotlib
import matplotlib.pyplot as plt
matplotlib.rcParams["font.sans-serif"] = ["simhei"]
matplotlib.rcParams["font.family"] = "sans-serif"
header = {
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/65.0.3325.181 Safari/537.36"}
def getnumberbyname(searchname):
searchname = {"kw": searchname}
searchname = urllib.parse.urlencode(searchname)
url = "http://sou.zhaopin.com/jobs/searchresult.ashx?jl=%E6%B7%B1%E5%9C%B3&" + searchname + "&p=1&isadv=0"
print(url, '==========')
req = urllib.request.Request(url, headers=header)
pagesource = urllib.request.urlopen(req).read().decode('utf-8', 'ignore')
restr = "<em>(\\d+)</em>"
regex = re.compile(restr, re.IGNORECASE)
mylist = regex.findall(pagesource)
return mylist[0]
pythonlist = ["python", "python 运维", "python 测试", "python 数据", "python web"]
num = 0
for pystr in pythonlist:
num += 1
print(pystr, eval(getnumberbyname(pystr)))
plt.bar([num], eval(getnumberbyname(pystr)), label=pystr)
plt.legend()
plt.show()
3 词云
“词云”这个概念由美国西北大学新闻学副教授、新媒体专业主任里奇·戈登(Rich Gordon)提出。“词云”就是对网络文本中出现频率较高的“关键词”予以视觉上的突出,形成“关键词云层”或“关键词渲染”,从而过滤掉大量的文本信息,使浏览网页者只要一眼扫过文本就可以领略文本的主旨。
import jieba
mystr = "小姐姐,我看你挺能睡的,睡我还不好"
wordsplitList = jieba.cut(mystr, cut_all=True)
print(wordsplitList)
print('/'.join(wordsplitList))
wordsplitListforSearch = jieba.cut_for_search(mystr)
print(wordsplitListforSearch)
print('/'.join(wordsplitListforSearch))
import wordcloud 导入词云
from wordcloud import STOPWORDS
import jieba
import numpy as np
import matplotlib
from matplotlib import pyplot as plt
from PIL import Image
pythonInfo = open('pythonworkinfo.txt', 'r', encoding='utf-8', errors='ignore').read()
pythonCut = jieba.cut(pythonInfo, cut_all=True)
pythonInfoList = ' '.join(pythonCut)
print(pythonInfoList)
backgroud = np.array(Image.open('pig.jpg'))
myCloudword = wordcloud.WordCloud(font_path='simkai.ttf',
width=400, height=200,
mask=backgroud,
scale=1,
max_words=200,
min_font_size=4,
stopwords=STOPWORDS,
random_state=50,
background_color='black',
max_font_size=100
).generate(pythonInfoList)
plt.figimage(mywordCloud)
plt.imsave('python.png',mywordCloud)
精简生成词云
import matplotlib.pyplot as plt
from wordcloud import WordCloud
import jieba
text_from_file_with_apath = open('pythonworkinfo.txt',encoding='utf-8',errors='ignore').read()
print(text_from_file_with_apath)
wordlist_after_jieba = jieba.cut(text_from_file_with_apath, cut_all=True)
wl_space_split = " ".join(wordlist_after_jieba)
my_wordcloud = WordCloud().generate(wl_space_split)
plt.imshow(my_wordcloud)
plt.axis("off")
plt.show()
FONT_PATH = os.environ.get("FONT_PATH", os.path.join(os.path.dirname(__file__), "simkai.ttf"))
覆盖掉默认的DroidSansMono.ttf
4 Matplotlib 绘图
1 多个subplot
import matplotlib.pyplot as plt
import numpy as np
data = np.arange(100, 201)
plt.subplot(2, 1, 1)
plt.plot(data)
data2 = np.arange(200, 301)
plt.subplot(2, 1, 2)
plt.plot(data2)
plt.show()
![]()
2 线形图
import matplotlib.pyplot as plt
plt.plot([1, 2, 3], [3, 6, 9], '-r')
plt.plot([1, 2, 3], [2, 4, 9], ':g')
plt.show()
![]()
这段代码说明如下:
-
plot函数的第一个数组是横轴的值,第二个数组是纵轴的值,所以它们一个是直线,一个是折线;
- 最后一个参数是由两个字符构成的,分别是线条的样式和颜色。前者是红色的直线,后者是绿色的点线。
3 散点图
import matplotlib.pyplot as plt
import numpy as np
N = 20
plt.scatter(np.random.rand(N) * 100,
np.random.rand(N) * 100,
c='r', s=100, alpha=0.5)
plt.scatter(np.random.rand(N) * 100,
np.random.rand(N) * 100,
c='g', s=200, alpha=0.5)
plt.scatter(np.random.rand(N) * 100,
np.random.rand(N) * 100,
c='b', s=300, alpha=0.5)
plt.show()
![]()
这段代码说明如下:
- 这幅图包含了三组数据,每组数据都包含了20个随机坐标的位置
- 参数
c表示点的颜色,s是点的大小,alpha是透明度
4 饼状图
import matplotlib.pyplot as plt
import numpy as np
labels = ['Mon', 'Tue', 'Wed', 'Thu', 'Fri', 'Sat', 'Sun']
data = np.random.rand(7) * 100
plt.pie(data, labels=labels, autopct='%1.1f%%')
plt.axis('equal')
plt.legend()
plt.show()
![]()
这段代码说明如下:
-
data是一组包含7个数据的随机数值
- 图中的标签通过
labels来指定
-
autopct指定了数值的精度格式
-
plt.axis('equal')设置了坐标轴大小一致
-
plt.legend()指明要绘制图例(见下图的右上角)
5 条形图
import matplotlib.pyplot as plt
import numpy as np
N = 7
x = np.arange(N)
data = np.random.randint(low=0, high=100, size=N)
colors = np.random.rand(N * 3).reshape(N, -1)
labels = ['Mon', 'Tue', 'Wed', 'Thu', 'Fri', 'Sat', 'Sun']
plt.title("Weekday Data")
plt.bar(x, data, alpha=0.8, color=colors, tick_label=labels)
plt.show()
![]()
这段代码说明如下:
- 这幅图展示了一组包含7个随机数值的结果,每个数值是[0, 100]的随机数
- 它们的颜色也是通过随机数生成的。
np.random.rand(N * 3).reshape(N, -1)表示先生成21(N x 3)个随机数,然后将它们组装成7行,那么每行就是三个数,这对应了颜色的三个组成部分。如果不理解这行代码,请先学习一下Python 机器学习库 NumPy 教程
-
title指定了图形的标题,labels指定了标签,alpha是透明度
6 直方图
import matplotlib.pyplot as plt
import numpy as np
data = [np.random.randint(0, n, n) for n in [3000, 4000, 5000]]
labels = ['3K', '4K', '5K']
bins = [0, 100, 500, 1000, 2000, 3000, 4000, 5000]
plt.hist(data, bins=bins, label=labels)
plt.legend()
plt.show()
![]()
上面这段代码中,[np.random.randint(0, n, n) for n in [3000, 4000, 5000]]生成了包含了三个数组的数组,这其中:
- 第一个数组包含了3000个随机数,这些随机数的范围是 [0, 3000)
- 第二个数组包含了4000个随机数,这些随机数的范围是 [0, 4000)
- 第三个数组包含了5000个随机数,这些随机数的范围是 [0, 5000)