hbase 部署
<property> <name>hbase.rootdir</name> <value>hdfs://hadoop.Master:9000/hbase</value> </property> <property> <name>hbase.cluster.distributed</name> <value>true</value> </property> <property> <name>hbase.master</name> <value>192.168.1.133:60000</value> </property> <property> <name>hbase.zookeeper.quorum</name> <value>hadoop.Master,hadoop.SlaveT1,hadoop.SlaveT2</value> </property>

低调大师中文资讯倾力打造互联网数据资讯、行业资源、电子商务、移动互联网、网络营销平台。
持续更新报道IT业界、互联网、市场资讯、驱动更新,是最及时权威的产业资讯及硬件资讯报道平台。
转载内容版权归作者及来源网站所有,本站原创内容转载请注明来源。
- 上一篇
Hadoop、MapReduce、YARN和Spark的区别与联系
Hadoop、MapReduce、YARN和Spark的区别与联系 转载:http://www.aichengxu.com/view/1103036 2015-03-17 16:37 本站整理 浏览(454) (1) Hadoop 1.0 第一代Hadoop,由分布式存储系统HDFS和分布式计算框架 MapReduce组成,其中,HDFS由一个NameNode和多个DataNode组成,MapReduce由一个JobTracker和多个 TaskTracker组成,对应Hadoop版本为Hadoop 1.x和0.21.X,0.22.x。 (2) Hadoop 2.0 第 二代Hadoop,为克服Hadoop 1.0中HDFS和MapReduce存在的各种问题而提出的。针对Hadoop 1.0中的单NameNode制约HDFS的扩展性问题,提出了HDFS Federation,它让多个NameNode分管不同的目录进而实现访问隔离和横向扩展;针对Hadoop 1.0中的MapReduce在扩展性和多框架支持方面的不足,提出了全新的资源管理框架YARN(Yet Another Resour...
- 下一篇
MapReduce 学习(一)
首先我们先来欣赏一下MapReduce的执行过程吧,如下图,自己看,不解释了。 Map 和 Reduce 的处理都是基于Key/Value来进行的,在Map中对文件的每一行进行处理,有两个输入参数,KeyInput,ValueInput,然后有两个输出,KeyOut,ValueOut,在Map执行之后有个Combiner,负责把多个Map传过来的Key相同的Value生成一个Iterable接口的集合,也可以自己指定一个Combiner,可以提高性能,要慎用,经过Combiner处理之后,就把处理过的内容传给Reduce,这是个一对一的过程,Reduce的输出也是KeyOut,ValueOut,最后是输出到文件,这里还有一个Partitiner,实现它可以把输出分别写到多个文件上,否则将会把所有reduce产生的文件输出到一个文件当中,好,我们来看一下下面这个图,大家就可以有一个更直观的感受了! 好啦,理论就讲到这里。
相关文章
文章评论
共有0条评论来说两句吧...