您现在的位置是:首页 > 文章详情

Tachyon:吞吐量超过HDFS 300多倍 来自伯克利的分布式文件系统

日期:2014-02-17点击:619

Hadoop足够快吗?美国加州大学伯克利分校的AMPLab基于Hadoop的核心组件开发出一个更快的版本Tachyon。AMPLab从底层重建了Hadoop平台,“没有最快,只有更快”。

AMPLab在大数据领域最知名的产品是Spark,它是一个内存中并行处理的框架,Spark的创造者声称:使用Shark运行并行处理Job速度要比MapReduce快100倍。又因为Spark是在内存运行,所以Shark可与Druid或者SAP's HANA系统一较高下。Spark也为ClearStory下一代分析和可视化服务提供处理引擎。如果你喜欢用Hive作为Hadoop的数据仓库,那么你一定会喜欢Shark,因为它代表了“Hive on Spark”。

AMPLab的最新目标就是Hadoop分布式文件系统(HDFS),不过HDFS在可用性和速度方面一直受人诟病,所以AMPLab创建了Tachyon( 在High Scalability上非常夺目,引起了Derrick Harris的注意),“Tachyon是一个高容错的分布式文件系统,允许文件以内存的速度在集群框架中进行可靠的共享,类似Spark和 MapReduce。通过利用lineage信息,积极地使用内存,Tachyon的吞吐量要比HDFS高300多倍。Tachyon都是在内存中处理缓存文件,并且让不同的 Jobs/Queries以及框架都能内存的速度来访问缓存文件”。

当然,AMPLab并不是第一个对HDFS提出质疑的组织,同时也有很多商业版本可供选择,像Quantcast就自己开发了开源文件系统,声称其在运行大规模文件系统时速度更快、更高效。

诚然,AMPLab所做的工作就是打破现有商业软件的瓶颈限制。如果碰巧破坏了现状,那么就顺其自然吧!不过,对于用户来说,AMPLab只是为那些寻找合适工具的人员提供了一种新的选择,AMPLab的合作伙伴和赞助商包括谷歌,Facebook,微软和亚马逊网络服务,它们当然非常乐意看到这些新技术,如果很有必要的话。

AMPLab的其他项目包括PIQL,类似于一种基于键/值存储的SQL查询语言;MLBase,基于分布式系统的机器学习系统;Akaros,一个多核和大型SMP系统的操作系统;Sparrow,一个低延迟计算集群调度系统。

原文链接:https://yq.aliyun.com/articles/449472
关注公众号

低调大师中文资讯倾力打造互联网数据资讯、行业资源、电子商务、移动互联网、网络营销平台。

持续更新报道IT业界、互联网、市场资讯、驱动更新,是最及时权威的产业资讯及硬件资讯报道平台。

转载内容版权归作者及来源网站所有,本站原创内容转载请注明来源。

文章评论

共有0条评论来说两句吧...

文章二维码

扫描即可查看该文章

点击排行

推荐阅读

最新文章