Go map实现原理
1. map数据结构
Golang的map使用哈希表作为底层实现,一个哈希表里可以有多个哈希表节点,也即bucket,而每个bucket就保存了map中的一个或一组键值对。
map数据结构由runtime/map.go/hmap
定义:
type hmap struct { count int // 当前保存的元素个数 ... B uint8 // 指示bucket数组的大小 ... buckets unsafe.Pointer // bucket数组指针,数组的大小为2^B ... }
下图展示一个拥有4个bucket的map:
本例中, hmap.B=2
, 而hmap.buckets长度是2^B为4. 元素经过哈希运算后会落到某个bucket中进行存储。查找过程类似。
bucket
很多时候被翻译为桶,所谓的哈希桶
实际上就是bucket。
2. bucket数据结构
bucket数据结构由runtime/map.go/bmap
定义:
type bmap struct { tophash [8]uint8 //存储哈希值的高8位 data byte[1] //key value数据:key/key/key/.../value/value/value... overflow *bmap //溢出bucket的地址 }
每个bucket可以存储8个键值对。
- tophash是个长度为8的数组,哈希值相同的键(准确的说是哈希值低位相同的键)存入当前bucket时会将哈希值的高位存储在该数组中,以方便后续匹配。
- data区存放的是key-value数据,存放顺序是key/key/key/...value/value/value,如此存放是为了节省字节对齐带来的空间浪费。
- overflow 指针指向的是下一个bucket,据此将所有冲突的键连接起来。
注意:上述中data和overflow并不是在结构体中显示定义的,而是直接通过指针运算进行访问的。
下图展示bucket存放8个key-value对:
3. 哈希冲突
当有两个或以上数量的键被哈希到了同一个bucket时,我们称这些键发生了冲突。Go使用链地址法来解决键冲突。
由于每个bucket可以存放8个键值对,所以同一个bucket存放超过8个键值对时就会再创建一个键值对,用类似链表的方式将bucket连接起来。
下图展示产生冲突后的map:
bucket数据结构指示下一个bucket的指针称为overflow bucket,意为当前bucket盛不下而溢出的部分。事实上哈希冲突并不是好事情,它降低了存取效率,好的哈希算法可以保证哈希值的随机性,但冲突过多也是要控制的,后面会再详细介绍。
4. 负载因子
负载因子用于衡量一个哈希表冲突情况,公式为:
负载因子 = 键数量/bucket数量
例如,对于一个bucket数量为4,包含4个键值对的哈希表来说,这个哈希表的负载因子为1.
哈希表需要将负载因子控制在合适的大小,超过其阀值需要进行rehash,也即键值对重新组织:
- 哈希因子过小,说明空间利用率低
- 哈希因子过大,说明冲突严重,存取效率低
每个哈希表的实现对负载因子容忍程度不同,比如Redis实现中负载因子大于1时就会触发rehash,而Go则在在负载因子达到6.5时才会触发rehash,因为Redis的每个bucket只能存1个键值对,而Go的bucket可能存8个键值对,所以Go可以容忍更高的负载因子。
5. 渐进式扩容
5.1 扩容的前提条件
为了保证访问效率,当新元素将要添加进map时,都会检查是否需要扩容,扩容实际上是以空间换时间的手段。
触发扩容的条件有二个:
- 负载因子 > 6.5时,也即平均每个bucket存储的键值对达到6.5个。
- overflow数量 > 2^15时,也即overflow数量超过32768时。
5.2 增量扩容
当负载因子过大时,就新建一个bucket,新的bucket长度是原来的2倍,然后旧bucket数据搬迁到新的bucket。
考虑到如果map存储了数以亿计的key-value,一次性搬迁将会造成比较大的延时,Go采用逐步搬迁策略,即每次访问map时都会触发一次搬迁,每次搬迁2个键值对。
下图展示了包含一个bucket满载的map(为了描述方便,图中bucket省略了value区域):
当前map存储了7个键值对,只有1个bucket。此地负载因子为7。再次插入数据时将会触发扩容操作,扩容之后再将新插入键写入新的bucket。
当第8个键值对插入时,将会触发扩容,扩容后示意图如下:
hmap数据结构中oldbuckets成员指身原bucket,而buckets指向了新申请的bucket。新的键值对被插入新的bucket中。 后续对map的访问操作会触发迁移,将oldbuckets中的键值对逐步的搬迁过来。当oldbuckets中的键值对全部搬迁完毕后,删除oldbuckets。
搬迁完成后的示意图如下:
数据搬迁过程中原bucket中的键值对将存在于新bucket的前面,新插入的键值对将存在于新bucket的后面。 实际搬迁过程中比较复杂,将在后续源码分析中详细介绍。
5.3 等量扩容
所谓等量扩容,实际上并不是扩大容量,buckets数量不变,重新做一遍类似增量扩容的搬迁动作,把松散的键值对重新排列一次,以使bucket的使用率更高,进而保证更快的存取。
在极端场景下,比如不断的增删,而键值对正好集中在一小部分的bucket,这样会造成overflow的bucket数量增多,但负载因子又不高,从而无法执行增量搬迁的情况,如下图所示:
上图可见,overflow的buckt中大部分是空的,访问效率会很差。此时进行一次等量扩容,即buckets数量不变,经过重新组织后overflow的bucket数量会减少,即节省了空间又会提高访问效率。
6. 查找过程
查找过程如下:
- 跟据key值算出哈希值
- 取哈希值低位与hmpa.B取模确定bucket位置
- 取哈希值高位在tophash数组中查询
- 如果tophash[i]中存储值也哈希值相等,则去找到该bucket中的key值进行比较
- 当前bucket没有找到,则继续从下个overflow的bucket中查找。
- 如果当前处于搬迁过程,则优先从oldbuckets查找
注:如果查找不到,也不会返回空值,而是返回相应类型的0值。
7. 插入过程
新员素插入过程如下:
- 跟据key值算出哈希值
- 取哈希值低位与hmap.B取模确定bucket位置
- 查找该key是否已经存在,如果存在则直接更新值
- 如果没找到将key,将key插入
赠人玫瑰手留余香,如果觉得不错请给个赞~
本篇文章已归档到GitHub项目,求星~ 点我即达
![](/img/my/wx.png)
低调大师中文资讯倾力打造互联网数据资讯、行业资源、电子商务、移动互联网、网络营销平台。
持续更新报道IT业界、互联网、市场资讯、驱动更新,是最及时权威的产业资讯及硬件资讯报道平台。
转载内容版权归作者及来源网站所有,本站原创内容转载请注明来源。
- 上一篇
教你清楚了解JAVA动态代理
代理在生活中很常见,比如说婚介网站,其实就是找对象的代理;还有社保代理、人事代理;还有找黄牛抢票,其实也是一种代理;而这些代理,在JAVA中也是有对应实现的。 1、为什么要动态代理 动态代理的作用其实就是在不修改原代码的前提下,对已有的方法进行增强。 关键点: 不修改原来已有的代码(满足设计模式的要求) 对已有方法进行增强 2、举个栗子 我们用一个很简单的例子来说明: Hello 类,有一个 introduction 方法。 现在我们的需求就是不修改 Hello 类的 introduction 方法,在 introduction 之前先 sayHello ,在 introduction 之后再 sayGoodBye 3、实现方式 JAVA中,实现动态代理有两种方式,一种是JDK提供的,一种是第三方库 CgLib 提供的。特点如下: CgLib 3.1、JDK动态代理 JDK动态代理需要实现接口,然后通过对接口方法的增强来实现动态代理 所以要使用JDK动态代理的话,我们首先要创建一个接口,并且被代理的方法要在这个接口里面 3.1.1、创建一个接口 我们创建一个接口如下: Persona...
- 下一篇
零拷贝I:用户模式视角
英文原文地址:http://www.linuxjournal.com/article/6345。内容是关于 Zero Copy(零拷贝) 的详细介绍。在RocketMQ的Consumer 消费消息过程,使用了零拷贝技术。作用是即使被频繁调用,文件传输效率也很高。 到目前为止,几乎每个人或多或少都听过Linux下所谓的"零拷贝"功能,但我经常遇到一些对这个概念没有充分理解的人。因此,我决定写一些文章来深入研究这个问题,希望能让大家认识到这个很有用的特性。在本文中,我们从用户模式的角度来看零拷贝,因此故意省略了内核级别的细节信息。 什么是"零拷贝"? 为了更好地理解问题的解决方案,我们首先需要理解问题本身。让我们来看一下网络服务器守护进程一个简单过程所涉及的内容,该过程通过网络将存储在文件中的数据提供给客户端。这里是一些示例代码: read(file, tmp_buf, len); write(socket, tmp_buf, len); 看起来很简单;你可能会认为只有这两个系统调用没有太大的开销。实际上,事实远非如此。在这两个调用的背后,数据就已经被拷贝至少四次,并且几...
相关文章
文章评论
共有0条评论来说两句吧...