小白学数据:教你用Python实现简单监督学习算法
监督学习作为运用最广泛的机器学习方法,一直以来都是从数据挖掘信息的重要手段。即便是在无监督学习兴起的近日,监督学习也依旧是入门机器学习的钥匙。
这篇监督学习教程适用于刚入门机器学习的小白。
当然了,如果你已经熟练掌握监督学习,也不妨快速浏览这篇教程,检验一下自己的理解程度~
什么是监督学习?
在监督学习中,我们首先导入包含有训练属性和目标属性的数据集。监督学习算法会从数据集中学习得出训练样本和其目标变量之间的关系,然后将学习到的关系对新样本(未被标记的样本)进行分类。
为了阐明监督学习的工作原理,我们用根据学生学习时间预测其考试成绩的例子来说明。
用数学表示,即Y = f(X)+ C,其中
- f表示学生学习时间和考试成绩之间的关系
- X表示输入(学习小时数)
- Y表示输出(考试分数)
- C表示随机误差
监督学习算法的终极目标是给出新的输入X,使得预测结果Y的准