李彦宏:没有应用,基础模型不值一提
2024世界人工智能大会暨人工智能全球治理高级别会议于7月4日在上海举行。
在2024WAIC期间,百度创始人、董事长兼首席执行官表示:“模型开源与代码开源不同,无法做到众人拾柴火焰高。激烈竞争环境中,商业化闭源模型最能打。当然这些都不是最重要的。没有应用,光有基础模型,不管是开源还是闭源,都是一文不值。”
李彦宏指出,百模大战造成了社会资源的巨大浪费,尤其是算力的浪费。但同时也使得我们追赶世界上最先进基础模型的能力得到了提升。
“去年10月我宣布文心4.0发布的时候,说文心4.0的能力跟GPT4相比毫不逊色,好多的同行还不以为然,今天大家可以看到国内已经有多款闭源模型声称他们已经追平或者是超越了GPT4的水平。”李彦宏说。
他表示,有些外行甚至混淆了模型开源和代码开源这两个概念。他认为,同样参数规模之下,闭源模型的能力比开源模型要更好。“如果开源想要能力追平闭源,那么他就需要有更大的参数。这就意味着推理成本会更高,反应速度会更慢。”
李彦宏说,大多数的应用场景并不合适开源模型,商业化的闭源模型才是最能打的。但他同时强调,没有应用,光有一个基础模型,不管是开源还是闭源都一文不值。
“我看到我们的媒体仍然是把主要的关注点放在了基础模型身上,一天到晚就是跑分,刷榜,谁谁谁又超越GPT4了,openAI又出来sora了,又出来GPT4o了等等。今天这个震撼发布,明天那个史诗级更新,但是我要问,应用在哪里?谁从中获益了?”,李彦宏说,应用其实离我们并不遥远,基于基础模型的应用在各个领域都已经开始了逐步渗透。
以下为演讲实录:
李彦宏:各位下午好,非常高兴再次来到上海参加世界人工智能大会,我是这个会议的常客了。去年因为出国没有来。所以我上一次来参加WAIC是2022年,我记得那年大会的主题是元宇宙,主办方也跟我讲,希望我讲一讲元宇宙,我说我还是讲AI吧,我讲不了元宇宙,所以我当时讲的主题是AIGC,就是AI Generated Content (Artificial Intelligence Generated Content)。我认为AI的技术发展路线,发生了方向性的改变,就是从过去的辨别式人工智能,转向了未来的生成式人工智能。
讲这个话是在2022年的夏天,5个月之后,大家都知道,ChatGPT发布了,而后来的事情大家就更清楚,所以两年的时间,恍若隔世,感觉整个世界都变了,人工智能可以说颠覆了绝大多数人的认知。
2023年国内出现了百模大战,造成了社会资源的巨大浪费,尤其是算力的浪费。但是也使得我们追赶世界上最先进的基础模型的能力得到了建立。
去年10月,我宣布文心4.0发布的时候说,文心4.0的能力跟GPT4相比毫不逊色,好多的同行还不以为然,今天大家可以看到,国内已经有多款闭源模型声称它们已经追平或者是超越了GPT4的水平。
注意,我们说的是闭源大模型,不是开源大模型,这也是今年以来争议比较多的一个话题。有些外行甚至混淆了模型开源和代码开源这两个概念。
所谓模型开源,是拿到的只是一大堆参数,你还是要去做SFT,还是要去做安全对齐,你不知道这些参数是怎么来的,你是无法做到众人拾柴火焰高的。即使你拿到对应的源代码,你也不知道他用了多少数据,用了什么比例的数据去训练这些参数。所以拿到这些东西,并不能够让你站在巨人的肩膀上去迭代和开发。
所以,同样参数规模之下,闭源模型的能力就比开源模型要更好,而如果开源要想能力追平闭源,那么它就需要有更大的参数,这就意味着推理成本会更高,反应速度会更慢。
很多人拿开源模型来改款,以为这样可以更好的服务自己的个性化应用,殊不知,这样你就创造了一个孤本模型,既无法从基础模型持续升级当中获益,也没办法跟别人去共享算力。
当然,我也承认开源模型在某些场景下是有自身价值的。比如说一些学术研究,或者在教学领域,大家想要研究大模型的工作机制,形成理论,这个时候可能是有价值的,因为大家也经常听到,我们觉得大模型能力很强,但是不知道为什么能力强,因为背后没有理论来支持它,所以研究这个东西,用开源的我觉得没问题。
但是,大多数的应用场景,开源模型并不合适,当你处在一个激烈竞争的市场环境当中,你需要让自己的业务效率比同行更高,成本更低,这个时候商业化的闭源模型是最能打的。
当然,这些都不是最重要的,没有应用,光有基础模型,不管是开源还是闭源都一文不值。
所以,我从去年下半年开始讲,大家不要卷模型了,要去卷应用。但是我看到很多人仍然把主要的关注点放在基础模型上,一天到晚就是跑分,刷榜,谁谁谁又超越GPT4了,openAI又出来sora了,又出来GPT4o了等等。今天这个震撼发布,明天那个史诗级更新,但是我要问,应用在哪里?谁从中获益了?
应用其实离我们并不遥远,基于基础模型的应用在各行各业、各个领域都已经开始了逐步的渗透,两个多月前,我们宣布文心大模型的日调用量超过了2亿,最近,文心的日均调用量超过了5亿!
仅仅两个多月的时间,调用量发生了这么大的变化,足见它背后代表了真实的需求,是有人在用,是有人真的从大模型当中获益了,得到了价值。
比如在快递领域,让大模型帮助处理订单,做到了“一张图、一句话寄快递”,不再需要其他繁琐的流程,时间从3分多钟缩短到19秒。而且90%以上的售后问题,也都由大模型来解决,效率提升非常的明显。
再比如在小说创作领域,一开始也用开源模型做出过一些效果,后来改用文心轻量级模型,经过10轮上万组数据的SFT和post pretrain,结果有了明显的提升,最近又转到文心4.0版本,仅用了数百条数据,4.0就在情节和逻辑方面展现出了非凡的优势,生成的内容无论是可用率还是优质率都大大超过了轻量级模型,网文作者们如虎添翼!
其实更通用的领域,比如说代码生成,文心快码这样的软件,在各个领域,也在逐步的渗透,在百度内部,我们有30%左右的代码,已经用AI生成的,代码的采用率超过了44%。
不过,我们要避免掉入“超级应用陷阱”,觉得一定要出现一个DAU10亿的APP才叫成功,这是移动时代的思维逻辑。其实不一定,AI时代,“超级能干”的应用比只看DAU的“超级应用”恐怕要更重要,只要对产业、对应用场景能产生大的增益,整体的价值就比移动互联网要大多了。
随着基础模型的日益强大,开发应用也越来越简单了,最简单的就是智能体,这也是我们最看好的AI应用的发展方向。制作一个好的智能体通常并不需要编码,只要用人话把智能体的工作流说清楚,再配上专有的知识库,一般就是一个很有价值的智能体了。这比互联网时代制作一个网页还要简单。
未来在医疗、金融、教育、制造、交通、农业等等领域,都会依据自己的场景,自己特有的经验、规则、数据等等,做出各种各样的智能体。将来会有数以百万量级的智能体出现,形成庞大的智能体生态。
而搜索是智能体分发的最大的入口。刚刚过去的高考季,很多大模型公司热衷于去写高考作文,我用AI写一个作文能得多少分,其实这个使用价值是不大的,人家不会让你带一个大模型去参加高考,但是真正的需求是大量的考生在考完之后要报志愿,要选择学校,选择专业,他们对一所大学,一个专业,会有各种各样的问题,而每一个考生的情况又是不一样的。这时候就是需要有一个智能体来回答每一个考生专有的问题。
在高峰时期,百度的高考智能体每天要回答超过两百万个考生的问题,我们总共只有1000万的考生,在一天当中有这么大比例的人在利用这个智能体。
AI正在以前所未有的速度向各行各业渗透,很多人担心如果我们日常的工作都让AI去做了,人是不是就没有工作机会了,这种担心不是没有道理的,但是过去这段时间,我听到的担心,听到的抱怨很多,听到的建设性的意见比较少,很少有人去致力于发掘生成式AI带来的新工作机会。
我在这算是抛砖引玉吧,我觉得一方面这次浪潮,AI更多是在扮演copilot的角色,是副驾驶,还要人来把关,AI只是辅助人工作,而不是替代人工作,它让人的工作效率更高,质量更好;另一方面,我们也看到有一些全新的工作机会开始冒出来了,比如数据标注师,过去几年我们帮助全国20多个城市落地了数据标注中心,提供了大量新的就业岗位,再比如提示词工程师,以后不用编程了,但是做好一个智能体还需要把工作流说清楚,这里要有很强的逻辑性,要用提示词对模型进行调教,随着智能体的大量涌现,这个工种需求量也会飙升。这些工作机会,通常门槛并不高,你做的一般也能够养家糊口,做得好的话,那上限可以年薪百万。
自人类文明诞生以来,永不停止的创新就是印刻在我们的DNA当中的。从石器时代的手斧,到移动时代的手机,再到AI时代的大模型,人类不断创造各种工具来改善生活,来提高生产力。但是它们永远只是工具,只有在被人类所使用的时候才有价值。我们坚定地相信,AI不是人类的竞争对手,我们构建和应用人工智能技术,是为了满足人的需求,增强人的能力、让人类的生活更美好。
谢谢大家!

低调大师中文资讯倾力打造互联网数据资讯、行业资源、电子商务、移动互联网、网络营销平台。
持续更新报道IT业界、互联网、市场资讯、驱动更新,是最及时权威的产业资讯及硬件资讯报道平台。
转载内容版权归作者及来源网站所有,本站原创内容转载请注明来源。
- 上一篇
国产编程语言 MoonBit 登顶海外知名媒体 The New Stack 热门文章榜
近日,MoonBit 团队负责人张宏波接受海外知名科技媒体 The New Stack 专访。采访文章《MoonBit:针对 Wasm 优化的语言,代码量少于Rust》(MoonBit: Wasm-Optimized Language Creates Less Code Than Rust)一经发出,即登顶the new stack的热门文章榜首。 在该篇报道中,资深科技记者 Loraine Lawson 与张宏波深入探讨了 MoonBit 在语言和工具链设计上的思路,在语言性能上针对 WebAssembly 技术实现的突破性进展,以及支持多平台后的生态前景,向开发者展现出 MoonBit 未来在边缘计算和无服务器计算领域的开发潜力。 The New Stack 是一家位于美国的全球 DevOps 领域权威媒体平台,内容涵盖云原生计算、前端和后端开发、网站可靠性工程等。 (文章链接:https://thenewstack.io/moonbit-wasm-optimized-language-creates-less-code-than-rust/) MoonBit 海外社区生态已初具规...
- 下一篇
大模型产品化第一年:战术、运营与战略
作者 |Eugene Yan、Bryan Bischof等 OneFlow编译 翻译|宛子琳、张雪聃、杨婷 题图由SiliconCloud平台生成 这是一个激动人心的时代,所有人都能够利用语言大模型(LLM)进行各种各样的产品构建。 过去一年里,LLM已经达到了“足够好”的水平,可以应用于现实世界的场景,并且模型每年都在迭代,变得更好、更便宜。伴随着社交媒体上的一系列产品演示,预计到2025年,AI领域的投资将达到2000亿美元。此外,供应商的API使LLM更加易于访问,让每个人(不仅仅是ML工程师和科学家)都能将智能融入到他们的产品中。尽管使用AI构建的门槛降低了,但实际创建有效的产品和系统(不仅仅是demo)仍然很有难度。 过去一年里,我们一直在进行构建,并在过程中发现了许多棘手的问题。虽然我们的经验并不代表整个行业,但我们希望分享自己的经验来避免同样的错误并加速迭代。我们将经验总结为以下三个部分: 战术层面 :一些关于提示、RAG、流程工程、评估和监控的实践建议。无论你是通过LLM进行构建的从业者,还是出于兴趣在周末进行项目开发,这部分内容都具有参考价值。 运营层面 :发布产品的...
相关文章
文章评论
共有0条评论来说两句吧...