AGI 趋势下的云原生数据计算系统
6 月 22 日,由开源中国主办,华为、上海浦东软件园联合主办的【云技术专场】OSC源创会 · 上海站 · 104期线下沙龙成功举办。来自拓数派的资深架构师徐阳发表了《AGI 趋势下的云原生数据计算系统》主题演讲,结合拓数派数据计算系统 PieDataCS 的实战落地经验为大家详细介绍 AGI 时代的云原生数据计算系统。以下为徐阳的演讲回顾,内容由拓数派贡献。
拓数派资深架构师徐阳
自2023年后,⼈⼯智能技术进⼊了⼀个更为成熟和⼴泛应⽤的阶段,人工通用智能(AGI)这一概念也成为了科技界和产业界热议的焦点。本文将结合AGI时代背景,从架构设计到落地实践,详细介绍拓数派云原生大模型数据计算系统 PieDataCS。
1 中国AGI发展现状与趋势
1.1 AGI市场与技术发展趋势
2023年被称为是AGI元年,大模型在人工智能领域掀起了一场风暴。尽管⼤模型在模仿⼈类认知⽅⾯取得了显著进步,但距离真正的通⽤智能还有很长的一段路。由于底层模型和算力离企业市场较远,我们相信AGI的发展将由应用占主导。
而 AI Agent 可以简化用户与大模型的互动,允许用户只需指定目标,即可驱动大模型完成任务。由于AI Agent 实现应用的优势主要集中于高度的环境适应性,企业环境的特定场景为AI Agent提供了理想的应用背景,垂直行业成为AI Agent最先实现应用的领域。
1.2 国内AGI市场分层
中国AGI市场技术框架自下向上可分为基础设施层、模型层、中间层和应用层四层:
- 基础设施层:是实现AGI的基⽯,提供算力支撑,是保证模型训练、推理部署能⼒的基础。例如云厂商等。
- 模型层:是AGI的核⼼,其能⼒直接影响最终AGI应⽤效率,业界相关产品可分为自研模型和基于开源模型的变种两种实现方案。
- 中间层:提供了AGI实际应⽤所需的核⼼功能和服务,是将用户应用场景和模型结合起来的桥梁,作为⼤模型应⽤落地能⼒补充的重要层级。这也是拓数派在AGI市场所扮演的角色。
- 应用层:是⽤户/客户直接使⽤AGI技术的界⾯,以提供特定服务和解决具体业务问题作为出发点。例如手机端和电脑端的SaaS服务软件。
2 云原生数据计算系统 PieDataCS
为了顺应AGI时代的发展,拓数派打造了大模型数据计算系统 PieDataCS,围绕数据组织云原生计算系统,重构数据存储和计算,让 AI 数学模型、数据和计算三者互为增强。PieDataCS 实现「一份存储,多引擎数据计算」,全面升级大数据系统至大模型时代,赋能行业AI场景应用。
2.1 PieDataCS 整体架构
作为国内数仓虚拟化技术的提出者,拓数派旗下的大模型数据计算系统 PieDataCS 围绕数据构建计算,采用首创的云原生eMPP(elastic Massive Parallel Processing)架构,实现元数据、数据和计算全分离,云上存储资源与计算资源可独立管理,数据计算资源可按需扩缩容,实现计算资源配置最优化。
PieDataCS 自下而上可分为数据存储层、硬件加速层、数据存储引擎层以及数据计算引擎层:
- 数据存储层:PieDataCS 采用存算分离架构,元数据、数据资源和计算“三权分立”,通过存储引擎简墨实现数据的统一管理,充分利用云存储等存储系统所带来的优势;
- 硬件加速层:采用FPGA异构技术,专注极致性能优化。在SQL计算引擎层面,对数据过滤、排序等方面进行优化;在存储引擎层面,对存储的加解密、解压缩等方面进行加速;在模型层,集成GEMM(通用矩阵乘法)、GEMV(通用矩阵-向量乘法)等多种算法,针对一些算子进行加速;
- 数据存储引擎层:PieDataCS 结合云存储能力打造的简墨存储系统,兼容S3对象存储、HDFS及其他分布式文件系统,并可打通多种存储技术,实现数据的统一管理;
- 数据计算引擎层:目前支持SQL计算引擎 PieCloudDB database,向量计算引擎PieCloudVector 以及机器学习引擎 PieCloudML,所有计算引擎共享一份底层数据。
2.2 PieDataCS 的设计
云原生数据计算系统 PieDataCS 的目标是为行业AI大模型赋能,从设计理念上主要考虑五个方面:
- 数据准备
数据是大模型的基石,数据质量直接决定了模型训练的效果,也是大模型能力涌现的关键。PieDataCS 可通过对实际业务数据(结构化、非结构化、半结构化数据)进行清洗、分类、去重、标注和增强等一系列处理,提升数据准确性、完整性、一致性,构建出高质量的行业数据集,为后续的模型训练和应用提供可靠的基础,提升模型的性能和适用性。
- 数据共享
PieDataCS 打造的存储底座简墨,所有计算引擎共享一份数据资源,可将日常业务中跨领域、跨业务的多样化数据进行统一存储,通过data sharing技术方便直观的共享给大模型,针对特定的问题领域进行模型的微调和优化。
- 数据安全
数据的安全性和隐私性一直是用户最关注的话题之一,数据计算系统的打造必须解决数据保护和数据访问权限管理的难题。PieDataCS 提供了企业级透明数据加密(TDE),通过实时加密、高级加密算法、多级密钥等多种技术保证所有数据在落盘前完成加密,并提供细粒度的角色与权限控制,实现私域隐私数据可控不出域,充分保证数据安全。
- 推理加速
在推理过程中,PieDataCS 为 AI 大模型提供 RAG 架构,可将先前计算得到的结果保存下来,并与当前的输入进行匹配。当发现相似的问题输入时,系统可以直接返回已经计算过的结果,而无需再次执行大模型的推理过程,避免了大量重复计算,大大提高了响应速度和推理的效率。
- 提升准确度
大模型通常会基于已经训练过的数据生成结果,但这也带来了专业知识缺乏和数据时效性的问题,限制了它在处理新问题上的表现。PieDataCS 利用RAG技术,通过引入外部知识库,突破预训练带来的知识时间限制,有效提高检索准确度,避免大模型出现幻觉和因模型更新或数据变化而引起的结果不一致问题,进而增加用户信任度。
2.3 PieDataCS 虚拟数仓引擎
PieDataCS 首款数据计算引擎 PieCloudDB 采用了领先的数仓虚拟化技术,可将多个物理数仓统一整合到一个高可用的虚拟数仓,基于用户不同的业务场景,对资源进行池化,支持根据数据授权动态创建虚拟数仓,打破数据孤岛,解决数据多副本问题。
2.3.1 架构与主要模块设计
在PieCloudDB中,数据可以保存在本地,也可以选择保存在S3、HDFS等共享存储上,PieCloudDB 拥有灵活的架构,除了支持存算分离之外,也可以支持存算一体架构。
对于元数据,PieCloudDB 将其抽离并存储于自研的分布式KV系统,基于键的自然排序实现索引以及基于watcher机制实现了高效的分布式锁管理,具备更高的性能,可进一步释放 PieCloudDB 存算分离架构的优势。当数据量较小时,也可以采用集中化的方式部署轻量集群,从而快速支撑业务场景。
针对计算性能优化,PieCloudDB 打造了SIMD向量化执行器,充分利用CPU并行计算等硬件资源实现更高效的数据处理。此外,PieCloudDB还提供了管控服务,可帮助用户快速进行集群自动化安装部署,可实现资源的统一监控和管理,确保系统的稳定性和可靠性。通过可视化的界面,用户可以轻松地进行故障排查、权限管理、安全审计等运维工作,降低运维成本。
2.3.2 分布式优化器设计
针对云原生和分布式场景,PieDataCS 对查询优化器同样进行了大量改造,实现聚集下推优化。经过测试,对比不使用聚集下推,在开启聚集下推后性能提升了大约300倍。此外,PieDataCS 还实现了多阶段聚集、分区表裁剪、递归 CTE 优化以及多表连接的最优顺序搜索等多种优化手段,大幅提升了查询性能。
2.3.3 结构化和半结构化数据同步
PieDataCS 兼容多种文件格式,除了自研的janm格式,还兼容主流的Parquet、ORC、CSV、JSON 等文件格式,具备对这些类型的文件进行SQL查询,无需数据导入或转换。
此外,为了满足实时数据分析的需求,PieDataCS 打造了 DataFlow 同步工具,支持将多种数据源的数据实时抽取并写入 PieDataCS,并支持通过云原生平台进行可视化操作;如果原始数据过大,也可以选择先将文件中转到S3对象存储中,并采用不同的算法进行压缩,节约存储空间的开销。
2.4 PieDataCS 向量计算引擎
云原生向量计算引擎 PieCloudVector,作为 PieDataCS 的第二款计算引擎,是大模型时代的分析型数据库升维,助力多模态大模型 AI 应用,进一步实现海量向量数据存储与高效查询。
PieCloudVector 集成了市面上主流的 Embedding 算法以及模型(ChatGLM、LLaMA、通义千问等),用户可以直接调用内置算法或者通过封装好的 API 接口,也可以根据自身需求选择本地或是公有云模型的 API,来进行数据的Embedding。
对于向量数据库,索引算法可以加速向量数据的搜索,是其高效检索能力的关键。PieCloudVector 支持主流的向量索引算法,如IVF_FLAT、HNSW以及混合索引等,同时实现了索引加速缓存机制,进一步提高了检索速度,缩短了响应时间。此外,PieCloudVector 还提供了L2距离、内积以及余弦相似度等多种向量检索算法。
在数据应用层面,PieCloudVector 对主流的大语言模型应用开发框架(LangChain、FinGPT等)进行了适配,提供了对应的 sdk,用户无需进行二次开发,可以直接使用现成的框架调用 Embedding 算法,然后将数据存储到 PieCloudVector中,进行 RAG 检索增强生成或者语义推理及检索等方面的应用。
与大部分传统计算引擎不同的是,PieCloudVector除了支持CPU以外,还支持在GPU计算节点上进行部署,可充分利用其强大的并行计算能力,并且还可以利用SIMD等硬件加速技术,进一步提升向量计算和数据处理的速度和效率,为大规模向量计算提供了必要的性能支持。
2.5 PieDataCS 机器学习引擎
PieDataCS 的第三款计算引擎 PieCloudML,旨在整合企业多模态数据资源,为多模态大型模型提供强大的数据计算支持,以满足数据科学家的需求和使用。
PieCloudML 设计了灵活的计算和存储架构,以支持不同规模和需求的机器学习任务。可以全面兼容主流的机器学习生态系统,支持使用Python、R等语言,满足不同数据科学家的偏好。PieCloudML 集成了 TensorFlow、PyTorch、Keras、Scikit-Learn 等流行的深度/机器学习框架,并提供了基于Jupyter Notebook的交互式开发环境,方便用户通过可视化管理界面快速调用各种开发库进行模型开发和训练。
PieCloudML 借助容器编排技术Kubernetes实现自动化容器的部署、升级和回滚,利用Kubernetes的弹性伸缩功能,PieCloudML能够根据实时负载动态调整Pod的资源请求和限制,应对不同的负载压力。Kubernetes的自我修复能力确保了PieCloudML服务的高可用性。在出现故障时,能够自动重启失败的容器或替换不健康的Pod。
另外,PieCloudML还提供了Spark Connector、JDBC、ODBC等多种数据访问接口,方便与各种数据源和业务系统的连接,简化数据的接入和使用。
2.4 多模态数据共享
简墨(JANM)作为 PieDataCS 的云存储底座,目标是打造成满足多云场景下高性能计算引擎的数据存储底座,基于云原生的设计和现代化的硬件设施,致力于简化大数据处理过程中的数据加载、读取和计算的整个流程,以完成各种场景下的数据计算和分析任务。
简墨支持多模态数据共享,可打通企业内部各个地方的数据,将结构化数据、半结构化数据以及非结构化数据统一的进行管理,具备高度抽象的数据访问协议,采用全自研的Table Format技术,可无缝对接Apache Iceberg、Apache Hudi、Delta Lake等多种存储,构建统一数据湖管理,并可通过统一的接口将数据共享给 SQL、流批一体、大模型等多种数据计算引擎,一份数据,多引擎计算,实现数据在不同服务之间的真正互通。
3 基于 PieDataCS 的用户案例实践
拓数派自成立以来专注于数据计算领域,PieDataCS 以云原生技术重构数据存储和计算,让大模型技术全面赋能行业AI场景应用,为企业创造更大的商业价值,成为AI的基础科技底座的同时,开启AI技术的新范式。
目前PieDataCS面向国内市场提供公有云版、社区版、企业版及一体机多个版本,满足企业不同业务场景需求,并已为金融、制造、医疗及教育等行业用户构建了AI数据底座。
3.1 某大型央企的数据底座项目
在数字化转型的需求下,某大型央企通过采用PieDataCS 作为新一代的数字底座,完成原有数据平台的替换,对接企业内部的OA、CRM、ERP等应用系统,将企业内部办公数据、业务应用数据以及外部数据统一整合到 PieDataCS 的简墨数据湖中,再根据不同的数据格式去采用PieDataCS 数据计算系统的不同的计算引擎进行处理。
结构化和半结构化数据采用了虚拟数仓引擎PieCloudDB 实时数据分析,也可以对接Flink进行流式计算,进行数据的加工。通过数据分层,来形成主题数据,从而对外形成标准的 API 接口。
而对于设计辅助增强需求,包括对3D/2D 图纸等数据通过模型做embedding,利用向量化引擎进行相似内容的近似检索。而通过机器学习引擎PieCloudML可以做到对传统的机器学习算法进行通用管理,来实现研制一体化的增强。
3.2 某金融客户的AIGC应用实践
在某金融客户案例中,由于其内部投资经理在日常工作中,有编写大量投资材料的需求,需要对法律法规、政策文件以及投研报告进行快速检索,形成对应的分析报告,为客户提供投资相关的数据支持。
为了提高检索工作的效率和准确性,该金融客户采用 PieDataCS 打造了基于向量计算引擎的 AIGC应用解决方案,通过自研大模型东吴秀财GPT,结合 LangChain 开发框架以及PieCloudVector 构建了 AIGC 应用平台。将把传统文本类数据做成embedding,导入PieCloudVector 中,从而实现根据需求,对内容进行精准搜索或全文检索。满足了该客户基于 GPT 构建投研分析、量化交易、智能顾问、情绪分析等多个场景的AI应用的需求。
总结
在AGI时代,数据的价值越来越凸显。拓数派致力于成为客户在数据计算领域的可靠伙伴,为客户提供更强大、可靠的数据服务和行业领先的数据技术支持。我们将持续进行产品的创新,不断优化产品功能和性能,以满足客户日益增长的数据需求。

低调大师中文资讯倾力打造互联网数据资讯、行业资源、电子商务、移动互联网、网络营销平台。
持续更新报道IT业界、互联网、市场资讯、驱动更新,是最及时权威的产业资讯及硬件资讯报道平台。
转载内容版权归作者及来源网站所有,本站原创内容转载请注明来源。
- 上一篇
小程序可测性能力建设与实践
本文整理自美团技术沙龙第77期《美团亿级流量系统的质量风险防控和稳定性治理实践》(视频已发B站,点击观看 )。作为一种终端产品生态,小程序在业界产品中占有非常重要的地位。本文从小程序的质量保障需求出发,分析小程序的测试难点,引出小程序可测性的基本概念,介绍美团到店研发平台针对小程序可测性改进的通用化方案。最后分享美团门票业务小程序测试工作的实践经验,本文旨在为读者在小程序质量保障领域提供一些有价值的见解和启示。 引言 测试活动从本质上可以视为被测系统因为某个激励产生相应的响应,并对这些响应进行全面检测的过程。这个过程(激励->响应->检查)涉及到两个角色:测试者以及测试对象,测试者执行激励与检查响应,由机器(程序)或者人来完成;被测对象接受激励,产生响应。从这个过程来看:激励可控,响应可观,称之为可测。以实际业务测试为例,修改缓存、网络请求MCOK、页面跳转、用户登录态设置等都属于可测性能力。 在未经过任何可测性改进的终端产品中,测试人员只能通过UI交互,从UI界面观察来完成最基本的质量保障。然而应用内部存在各种各样复杂的逻辑、状态,要进行更加深入的测试则需要对这些信息进行...
- 下一篇
X Spring File Storage v2.2.0 已经发布,Spring 文件存储库
X Spring File Storage v2.2.0 已经发布,Spring 文件存储库 此版本更新内容包括: 原名 X Spring File Storage 现已捐赠至 dromara 开源组织 x-file-storage.dromara.org | x-file-storage.xuyanwu.cn | spring-file-storage.xuyanwu.cn 简介 一行代码将文件存储到本地、FTP、SFTP、WebDAV、阿里云 OSS、华为云 OBS、七牛云 Kodo、腾讯云 COS、百度云 BOS、又拍云 USS、MinIO、 Amazon S3、GoogleCloud Storage、FastDFS、 Azure Blob Storage、Cloudflare R2、金山云 KS3、美团云 MSS、京东云 OSS、天翼云 OOS、移动 云EOS、沃云 OSS、网易数帆 NOS、Ucloud US3、青云 QingStor、平安云 OBS、首云 OSS、IBM COS、其它兼容 S3 协议的存储平台。查看 所有支持的存储平台 通过 WebDAV 连接到 Alist...
相关文章
文章评论
共有0条评论来说两句吧...
文章二维码
点击排行
推荐阅读
最新文章
- CentOS6,7,8上安装Nginx,支持https2.0的开启
- CentOS8,CentOS7,CentOS6编译安装Redis5.0.7
- SpringBoot2更换Tomcat为Jetty,小型站点的福音
- Jdk安装(Linux,MacOS,Windows),包含三大操作系统的最全安装
- CentOS7,8上快速安装Gitea,搭建Git服务器
- SpringBoot2整合MyBatis,连接MySql数据库做增删改查操作
- SpringBoot2全家桶,快速入门学习开发网站教程
- CentOS8安装MyCat,轻松搞定数据库的读写分离、垂直分库、水平分库
- CentOS8编译安装MySQL8.0.19
- CentOS7,CentOS8安装Elasticsearch6.8.6