详解ResNet 网络,如何让网络变得更“深”了
摘要:残差网络(ResNet)的提出是为了解决深度神经网络的“退化”(优化)问题。ResNet 通过设计残差块结构,调整模型结构,让更深的模型能够有效训练更训练。
本文分享自华为云社区《Backbone 网络-ResNet 网络详解》,作者: 嵌入式视觉 。
摘要
残差网络(ResNet
)的提出是为了解决深度神经网络的“退化”(优化)问题。
有论文指出,神经网络越来越深的时候,反传回来的梯度之间的相关性会越来越差,最后接近白噪声。即更深的卷积网络会产生梯度消失问题导致网络无法有效训练。
而 ResNet
通过设计残差块结构,调整模型结构,让更深的模型能够有效训练更训练。目前 ResNet 被当作目标检测、语义分割等视觉算法框架的主流 backbone。
一,残差网络介绍
作者认为,假设一个比较浅的卷积网络已经可以达到不错的效果,那么即使新加了很多卷积层什么也不做,模型的效果也不会变差。但,之所以之前的深度网络出现退化问题,是因为让网络层什么都不做恰好是当前神经网络最难解决的问题之一!
因此,作者可以提出残差网络的初衷,其实是让模型的内部结构至少有恒等映射的能力(什么都不做的能力),这样可以保证叠加更深的卷积层不会因为网络更深而产生退化问题!
1.1,残差结构原理
对于 VGG 式的卷积网络中的一个卷积 block,假设 block 的输入为 xx ,期望输出为 H(x)H(x),block 完成非线性映射功能。
那么,如何实现恒等映射呢?
假设直连(plain
)卷积 block 的输入为 xx ,block 期望输出为 H(x)H(x),我们一般第一反应是直接让学习 H(x)=xH(x)=x,但是这很难!
对此,作者换了个角度想问题,既然 H(x)=xH(x)=x 很难学习到,那我就将 H(x)H(x) 学习成其他的,而让恒等映射能力通过其他结构来实现,比如,直接加个 shorcut 不就完事了!这样只要直连 block 网络输出学习为 0 就行了。而让直连卷积 block 输出学习为 0 比学习成恒等映射的能力是要简单很多的!毕竟前者通过 L2 正则化就能实现了!
因此,作者将网络设计为 H(x)=F(x)+xH(x)=F(x)+x,即直接把恒等映射作为网络的一部分,只要 F(x)=0F(x)=0,即实现恒等映射: H(x)=xH(x)=x。残差块结构(resdiual block
)。基本残差块结构如下图所示:
从图中可以看出,一个残差块有 22 条路径 F(x)F(x) 和 xx,F(x)F(x) 路径拟合残差 H(x)−xH(x)−x,可称为残差路径,xx 路径为恒等映射(identity mapping),称其为”shortcut”。图中的 ⊕⊕ 为逐元素相加(element-wise addition
),要求参与运算的 F(x)F(x) 和 xx 的尺寸必须相同!
这就把前面的问题转换成了学习一个残差函数 F(x)=H(x)−xF(x)=H(x)−x。
综上总结:可以认为 Residual Learning 的初衷(原理),其实是让模型的内部结构至少有恒等映射的能力。以保证在堆叠网络的过程中,网络至少不会因为继续堆叠而产生退化!
注意,很多博客片面解释 resnet 解决了梯度消失问题所以有效的的观点是片面的且方向也错了!resnet 到底解决了什么问题以及为什么有效问题的更细节回答,可以参考这个回答。
1.2,两种不同的残差路径
在 ResNet 原论文中,残差路径的设计可以分成 22 种,
- 一种没有
bottleneck
结构,如图3-5左所示,称之为“basic block”,由 2 个 3×33×3 卷积层构成。2 层的残差学习单元其两个输出部分必须具有相同的通道数(因为残差等于目标输出减去输入,即 H(x)−xH(x)−x,所以输入、输出通道数目需相等)。 - 另一种有
bottleneck
结构,称之为 “bottleneck block”,对于每个残差函数 FF,使用 33 层堆叠而不是 2 层,3 层分别是 1×11×1,3×33×3 和 1×11×1 卷积。其中 1×11×1 卷积层负责先减小然后增加(恢复)维度,使 3×33×3 卷积层的通道数目可以降低下来,降低参数量减少算力瓶颈(这也是起名 bottleneck 的原因 )。50
层以上的残差网络都使用了 bottleneck block 的残差块结构,因为其可以减少计算量和降低训练时间。
3 层的残差学习单元是参考了 Inception Net 结构中的
Network in Network
方法,在中间 3×33×3 的卷积前后使用 1×11×1 卷积,实现先降低维度再提升维度,从而起到降低模型参数和计算量的作用。
1.3,两种不同的 shortcut 路径
shortcut
路径大致也分成 22 种,一种是将输入 xx 直接输出,另一种则需要经过 1×11×1 卷积来升维或降采样,其是为了将 shortcut
输出与 F(x)
路径的输出保持形状一致,但是其对网络性能的提升并不明显,两种结构如下图所示。
Residual Block(残差块)之间的衔接,在原论文中,F(x)+xF(x)+x 是经过 ReLU 后直接作为下一个 block 的输入 xx。
二,ResNet18 模型结构分析
残差网络中,将堆叠的几层卷积 layer
称为残差块(Residual Block
),多个相似的残差块串联构成 ResNet。ResNet18 和 ResNet34 Backbone用的都是两层的残差学习单元(basic block
),更深层的ResNet则使用的是三层的残差学习单元(bottle block
)。
ResNet18 其结构如下图所示。
ResNet18 网络具体参数如下表所示。
假设图像输入尺寸为,1024×20481024×2048,ResNet 共有五个阶段。
- 其中第一阶段的
conv1 layer
为一个 7×77×7 的卷积核,stride
为 2,然后经过池化层处理,此时特征图的尺寸已成为输入的1/4
,即输出尺寸为 512×1024512×1024。 - 接下来是四个阶段,也就是表格中的四个
layer
:conv2_x、conv3_x、conv4_x、conv5_x,后面三个都会降低特征图尺寸为原来的1/2
,特征图的下采样是通过步长为2
的 conv3_1, conv4_1 和 conv5_1 执行。所以,最后输出的 feature_map 尺寸为输入尺寸降采样 32=4×2×2×232=4×2×2×2 倍。
在工程代码中用 make_layer
函数产生四个 layer
即对应 ResNet 网络的四个阶段。根据不同层数的 ResNet(N):
- 输入给每个 layer 的
blocks
是不同的,即每个阶段(layer
)里面的残差模块数目不同(即layers
列表不同) - 采用的
block
类型(basic
还是bottleneck
版)也不同。
本文介绍的 ResNet18,使用 basic block
,其残差模块数量(即units数量)是 [2, 2, 2, 2],又因为每个残差模块中只包含了 2 层卷积,故残差模块总的卷积层数为 (2+2+2+2)*2=16,再加上第一层的卷积和最后一层的分类,总共是 18 层,所以命名为 ResNet18。
ResNet50 为 [3, 4, 6, 3]。
个人思考
看了后续的 ResNeXt
、ResNetv2
、Densenet
、CSPNet
、VOVNet
等论文,越发觉得 ResNet
真的算是 Backone
领域划时代的工作了,因为它让深层神经网络可以训练,基本解决了深层神经网络训练过程中的梯度消失问题,并给出了系统性的解决方案(两种残差结构),即系统性的让网络变得更“深”了。而让网络变得更“宽”的工作,至今也没有一个公认的最佳方案(Inception
、ResNeXt
等后续没有广泛应用),难道是因为网络变得“宽”不如“深”更重要,亦或是我们还没有找到一个更有效的方案。
参考资料
- Deep Residual Learning for Image Recognition
- https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py

低调大师中文资讯倾力打造互联网数据资讯、行业资源、电子商务、移动互联网、网络营销平台。
持续更新报道IT业界、互联网、市场资讯、驱动更新,是最及时权威的产业资讯及硬件资讯报道平台。
转载内容版权归作者及来源网站所有,本站原创内容转载请注明来源。
- 上一篇
LLVM 正式支持 LoongArch 架构
LLVM于2023年3月18日发布了16.0.0版本,以正式后端(official target)的级别实现了对LoongArch指令集架构的完善支持。 至此,开源软件世界最重要的五大基础软件(BIG FIVE),即Linux内核、GCC、LLVM、Glibc、Binutils,都已发布了支持LoongArch架构的正式版本。 此后的LoongArch架构操作系统发行版将可以直接基于上游社区版本进行构建,标志着LoongArch软件生态建设将迎来快速发展的新阶段。 LLVM介绍 LLVM是如今设计和开发编译器的最重要的框架之一,它不仅提供了知名的C/C++编译器前端Clang,也为Rust等许多其他编程语言提供了编译框架支持,包括Chromium在内的大量大型软件都采用LLVM作为编译构建工具。 LLVM项目全面支持LoongArch 根据此次LLVM社区官方发行注记(https://releases.llvm.org/)的说明,在LLVM16中,LoongArch架构从实验性后端(experimental target)被提升至正式后端(official target),这意味着Lo...
- 下一篇
如何基于 Apache Doris 与 Apache Flink 快速构建极速易用的实时数仓
随着大数据应用的不断深入,企业不再满足离线数据加工计算的时效,实时数据需求已成为数据应用新常态。伴随着实时分析需求的不断膨胀,传统的数据架构面临的成本高、实时性无法保证、组件繁冗、运维难度高等问题日益凸显。为了适应业务快速迭代的特点,帮助企业提升数据生产和应用的时效性、进一步挖掘实时数据价值,实时数仓的构建至关重要。 本文将分享如何基于 Apache Doris 和 Apache Flink 快速构建一个极速易用的实时数仓,包括数据同步、数据集成、数仓分层、数据更新、性能提升等方面的具体应用方案,在这之前,我们先可以先了解一下传统的数据架构如何设计的、又存在哪些痛点问题。 # 实时数仓的需求与挑战 上图所示为传统的数据架构,如果我们从数据流的⻆度分析传统的数据处理架构,会发现从源端采集到的业务数据和日志数据主要会分为实时和离线两条链路: 在实时数据部分,通过 Binlog 的⽅式,将业务数据库中的数据变更 (CDC,Change Data Capture)采集到实时数仓。同时,通过 Flume-Kafka-Sink 对日志数据进⾏实时采集。当不同来源的数据都采集到实时存储系统后,便可以...
相关文章
文章评论
共有0条评论来说两句吧...
文章二维码
点击排行
推荐阅读
最新文章
- SpringBoot2全家桶,快速入门学习开发网站教程
- Docker使用Oracle官方镜像安装(12C,18C,19C)
- Docker快速安装Oracle11G,搭建oracle11g学习环境
- Docker安装Oracle12C,快速搭建Oracle学习环境
- CentOS7安装Docker,走上虚拟化容器引擎之路
- Hadoop3单机部署,实现最简伪集群
- CentOS8安装Docker,最新的服务器搭配容器使用
- CentOS7编译安装Gcc9.2.0,解决mysql等软件编译问题
- Linux系统CentOS6、CentOS7手动修改IP地址
- CentOS7,8上快速安装Gitea,搭建Git服务器