YOLOX-PAI: 加速 YOLOX, 比 YOLOV6 更快更强
作者:忻怡、周楼、谦言、临在 导言 目标检测(object detection)旨在定位并识别出图像中的目标物体,一直以来都是计算机视觉领域研究的热点问题,也是自动驾驶、目标追踪等任务的基础。近年来,优秀的目标检测算法不断涌现,其中单阶段的YOLO系列以其高效、简洁的优势,始终是目标检测算法领域的一个重要分支。2021年,旷视提出YOLOX[1]算法,在速度和精度上构建了新的基线,组件灵活可部署,深受工业界的喜爱。本文基于阿里云 PAI-EasyCV框架复现YOLOX算法,探究用以实际提升YOLOX精度的实用技巧,并进一步结合阿里巴巴计算平台PAI自研的PAI-Blade推理加速框架优化模型性能。经过我们对社区诸多YOLOX 改进技巧的复现和探索,进一步提升了YOLOX的性能,在速度和精度上都比现阶段的40~50mAP 的SOTA的YOLOv6更胜一筹。同时,PAI-EasyCV提供高效简洁的模型部署和端到端推理接口,供社区快速体验使用YOLOX-PAI的功能。 总结一下我们的工作贡献: 我们提供了一套Apache License 训练/优化/推理的代码库以及镜像,可以实现当前社区40...





