SparkSQL中产生笛卡尔积的几种典型场景以及处理策略
本文转载自公众号: 大数据学习与分享
原文链接
【前言:如果你经常使用Spark SQL进行数据的处理分析,那么对笛卡尔积的危害性一定不陌生,比如大量占用集群资源导致其他任务无法正常执行,甚至导致节点宕机。那么都有哪些情况会产生笛卡尔积,以及如何事前"预测"写的SQL会产生笛卡尔积从而避免呢?(以下不考虑业务需求确实需要笛卡尔积的场景)】
Spark SQL几种产生笛卡尔积的典型场景
首先来看一下在Spark SQL中产生笛卡尔积的几种典型SQL:
- join语句中不指定on条件
select * from test_partition1 join test_partition2;
- join语句中指定不等值连接
select * from test_partition1 t1 inner join test_partition2 t2 on t1.name <> t2.name;
- join语句on中用or指定连接条件
select * from test_partition1 t1 join test_partition2 t2 on t1.id = t2.id or t1.name = t2.name;
- join语句on中用||指定连接条件
select * from test_partition1 t1 join test_partition2 t2 on t1.id = t2.id || t1.name = t2.name;
除了上述举的几个典型例子,实际业务开发中产生笛卡尔积的原因多种多样。
同时需要注意,在一些SQL中即使满足了上述4种规则之一也不一定产生笛卡尔积。比如,对于join语句中指定不等值连接条件的下述SQL不会产生笛卡尔积:
--在Spark SQL内部优化过程中针对join策略的选择,最终会通过SortMergeJoin进行处理。
select * from test_partition1 t1 join test_partition2 t2 on t1.id = t2.id and t1.name<>t2.name;
此外,对于直接在SQL中使用cross join的方式,也不一定产生笛卡尔积。比如下述SQL:
-- Spark SQL内部优化过程中选择了SortMergeJoin方式进行处理 select * from test_partition1 t1 cross join test_partition2 t2 on t1.id = t2.id;
但是如果cross join没有指定on条件同样会产生笛卡尔积。
那么如何判断一个SQL是否产生了笛卡尔积呢?
Spark SQL是否产生了笛卡尔积
以join语句不指定on条件产生笛卡尔积的SQL为例:
-- test_partition1和test_partition2是Hive分区表 select * from test_partition1 join test_partition2;
通过Spark UI上SQL一栏查看上述SQL执行图,如下:
可以看出,因为该join语句中没有指定on连接查询条件,导致了CartesianProduct即笛卡尔积。
再来看一下该join语句的逻辑计划和物理计划:
== Parsed Logical Plan == 'GlobalLimit 1000 +- 'LocalLimit 1000 +- 'Project [*] +- 'UnresolvedRelation `t` == Analyzed Logical Plan == id: string, name: string, dt: string, id: string, name: string, dt: string GlobalLimit 1000 +- LocalLimit 1000 +- Project [id#84, name#85, dt#86, id#87, name#88, dt#89] +- SubqueryAlias `t` +- Project [id#84, name#85, dt#86, id#87, name#88, dt#89] +- Join Inner :- SubqueryAlias `default`.`test_partition1` : +- HiveTableRelation `default`.`test_partition1`, org.apache.hadoop.hive.ql.io.parquet.serde.ParquetHiveSerDe, [id#84, name#85], [dt#86] +- SubqueryAlias `default`.`test_partition2` +- HiveTableRelation `default`.`test_partition2`, org.apache.hadoop.hive.ql.io.parquet.serde.ParquetHiveSerDe, [id#87, name#88], [dt#89] == Optimized Logical Plan == GlobalLimit 1000 +- LocalLimit 1000 +- Join Inner :- HiveTableRelation `default`.`test_partition1`, org.apache.hadoop.hive.ql.io.parquet.serde.ParquetHiveSerDe, [id#84, name#85], [dt#86] +- HiveTableRelation `default`.`test_partition2`, org.apache.hadoop.hive.ql.io.parquet.serde.ParquetHiveSerDe, [id#87, name#88], [dt#89] == Physical Plan == CollectLimit 1000 +- CartesianProduct :- Scan hive default.test_partition1 [id#84, name#85, dt#86], HiveTableRelation `default`.`test_partition1`, org.apache.hadoop.hive.ql.io.parquet.serde.ParquetHiveSerDe, [id#84, name#85], [dt#86] +- Scan hive default.test_partition2 [id#87, name#88, dt#89], HiveTableRelation `default`.`test_partition2`, org.apache.hadoop.hive.ql.io.parquet.serde.ParquetHiveSerDe, [id#87, name#88], [dt#89]
通过逻辑计划到物理计划,以及最终的物理计划选择CartesianProduct,可以分析得出该SQL最终确实产生了笛卡尔积。
Spark SQL中产生笛卡尔积的处理策略
在之前的文章中《Spark SQL如何选择join策略》已经介绍过,Spark SQL中主要有
1.ExtractEquiJoinKeys(Broadcast Hash Join、Shuffle Hash Join、Sort Merge Join,这3种是我们比较熟知的Spark SQL join)和Without joining keys(CartesianProduct、BroadcastNestedLoopJoin)join策略。
那么,如何判断SQL是否产生了笛卡尔积就迎刃而解。
在利用Spark SQL执行SQL任务时,通过查看SQL的执行图来分析是否产生了笛卡尔积。如果产生笛卡尔积,则将任务杀死,进行任务优化避免笛卡尔积。【不推荐。用户需要到Spark UI上查看执行图,并且需要对Spark UI界面功能等要了解,需要一定的专业性。(注意:这里之所以这样说,是因为Spark SQL是计算引擎,面向的用户角色不同,用户不一定对Spark本身了解透彻,但熟悉SQL。对于做平台的小伙伴儿,想必深有感触)】
2.分析Spark SQL的逻辑计划和物理计划,通过程序解析计划推断SQL最终是否选择了笛卡尔积执行策略。如果是,及时提示风险。
具体可以参考Spark SQL join策略选择的源码:
def apply(plan: LogicalPlan): Seq[SparkPlan] = plan match { // --- BroadcastHashJoin -------------------------------------------------------------------- // broadcast hints were specified case ExtractEquiJoinKeys(joinType, leftKeys, rightKeys, condition, left, right) if canBroadcastByHints(joinType, left, right) => val buildSide = broadcastSideByHints(joinType, left, right) Seq(joins.BroadcastHashJoinExec( leftKeys, rightKeys, joinType, buildSide, condition, planLater(left), planLater(right))) // broadcast hints were not specified, so need to infer it from size and configuration. case ExtractEquiJoinKeys(joinType, leftKeys, rightKeys, condition, left, right) if canBroadcastBySizes(joinType, left, right) => val buildSide = broadcastSideBySizes(joinType, left, right) Seq(joins.BroadcastHashJoinExec( leftKeys, rightKeys, joinType, buildSide, condition, planLater(left), planLater(right))) // --- ShuffledHashJoin --------------------------------------------------------------------- case ExtractEquiJoinKeys(joinType, leftKeys, rightKeys, condition, left, right) if !conf.preferSortMergeJoin && canBuildRight(joinType) && canBuildLocalHashMap(right) && muchSmaller(right, left) || !RowOrdering.isOrderable(leftKeys) => Seq(joins.ShuffledHashJoinExec( leftKeys, rightKeys, joinType, BuildRight, condition, planLater(left), planLater(right))) case ExtractEquiJoinKeys(joinType, leftKeys, rightKeys, condition, left, right) if !conf.preferSortMergeJoin && canBuildLeft(joinType) && canBuildLocalHashMap(left) && muchSmaller(left, right) || !RowOrdering.isOrderable(leftKeys) => Seq(joins.ShuffledHashJoinExec( leftKeys, rightKeys, joinType, BuildLeft, condition, planLater(left), planLater(right))) // --- SortMergeJoin ------------------------------------------------------------ case ExtractEquiJoinKeys(joinType, leftKeys, rightKeys, condition, left, right) if RowOrdering.isOrderable(leftKeys) => joins.SortMergeJoinExec( leftKeys, rightKeys, joinType, condition, planLater(left), planLater(right)) :: Nil // --- Without joining keys ------------------------------------------------------------ // Pick BroadcastNestedLoopJoin if one side could be broadcast case j @ logical.Join(left, right, joinType, condition) if canBroadcastByHints(joinType, left, right) => val buildSide = broadcastSideByHints(joinType, left, right) joins.BroadcastNestedLoopJoinExec( planLater(left), planLater(right), buildSide, joinType, condition) :: Nil case j @ logical.Join(left, right, joinType, condition) if canBroadcastBySizes(joinType, left, right) => val buildSide = broadcastSideBySizes(joinType, left, right) joins.BroadcastNestedLoopJoinExec( planLater(left), planLater(right), buildSide, joinType, condition) :: Nil // Pick CartesianProduct for InnerJoin case logical.Join(left, right, _: InnerLike, condition) => joins.CartesianProductExec(planLater(left), planLater(right), condition) :: Nil case logical.Join(left, right, joinType, condition) => val buildSide = broadcastSide( left.stats.hints.broadcast, right.stats.hints.broadcast, left, right) // This join could be very slow or OOM joins.BroadcastNestedLoopJoinExec( planLater(left), planLater(right), buildSide, joinType, condition) :: Nil // --- Cases where this strategy does not apply --------------------------------------------- case _ => Nil }
此外,在业务开发中,要不断总结归纳产生笛卡尔积的情况,形成知识文档,以便在后续业务开发中避免类似的情况出现。
除了笛卡尔积效率比较低,BroadcastNestedLoopJoin效率也相对低效,尤其是当数据量大的时候还很容易造成driver端的OOM,这种情况也是需要极力避免的。
阿里巴巴开源大数据技术团队成立Apache Spark中国技术社区,定期推送精彩案例,技术专家直播,问答区近万人Spark技术同学在线提问答疑,只为营造纯粹的Spark氛围,欢迎钉钉扫码加入!
对开源大数据和感兴趣的同学可以加小编微信(下图二维码,备注“进群”)进入技术交流微信群。
Apache Spark技术交流社区公众号,微信扫一扫关注

低调大师中文资讯倾力打造互联网数据资讯、行业资源、电子商务、移动互联网、网络营销平台。
持续更新报道IT业界、互联网、市场资讯、驱动更新,是最及时权威的产业资讯及硬件资讯报道平台。
转载内容版权归作者及来源网站所有,本站原创内容转载请注明来源。
- 上一篇
剖析 Elasticsearch 源码,解读 ES 在 index、create 时的原理
作者介绍 魏彬,普翔科技 CTO,开源软件爱好者,中国第一位 Elastic 认证工程师,《Elastic日报》和 《ElasticTalk》社区项目发起人,被 elastic 中国公司授予 2019 年度合作伙伴架构师特别贡献奖。对 Elasticsearch、Kibana、Beats、Logstash、Grafana 等开源软件有丰富的实践经验,为零售、金融、保险、证券、科技等众多行业的客户提供过咨询和培训服务,帮助客户在实际业务中找准开源软件的定位,实现从 0 到 1 的落地、从 1 到 N 的拓展,产生实际的业务价值。 社区里面有人问了如下一个问题: 执行 bulk 索引文档的时候,用 index 或者 create 类型并且自定义 doc id 的情况下,是否会像 update 一样每次都要去 get 一遍原始文档? 比如下面的这条命令:POST _bulk { "index" : { "_index" : "test", "_type" : "type1", "_id" : "1" } } { "field1" : "value1" } { "create" : { "_i...
- 下一篇
带你入坑大数据(一) --- HDFS基础概念篇
一、HDFS的概念 先简单过一下基础概念,起码知道接下来要说的东西和这个东西是用来干啥的 1.1 Hadoop架构 HDFS(Hadoop Distributed FileSystem),由3个模块组成:分布式存储HDFS,分布式计算MapReduce,资源调度框架Yarn 大量的文件可以分散存储在不同的服务器上面 单个文件比较大,单块磁盘放不下,可以切分成很多小的block块,分散存储在不同的服务器上面,各服务器通过网络连接,造成一个整体。 1.2 核心概念block HDFS3.x上的文件会按照128M为单位切分成一个个的block,分散存储在集群的不同的数据节点datanode上,需要注意的是,这个操作是HDFS自动完成的。 假设我们现在要存储一个300M的文件,这个300M就会被切分成 datanode1:128M + datanode2:128M + datanode3:44M 这时我们需要知道,就算它的底层逻辑会按照128M进行划分,可是datanode3一个实际占用44M的块也是不会占据128M的空间的 1.3 block的副本 为什么hadoop直至今天会这么流行,就是...
相关文章
文章评论
共有0条评论来说两句吧...
文章二维码
点击排行
推荐阅读
最新文章
- Windows10,CentOS7,CentOS8安装MongoDB4.0.16
- SpringBoot2编写第一个Controller,响应你的http请求并返回结果
- CentOS关闭SELinux安全模块
- CentOS8,CentOS7,CentOS6编译安装Redis5.0.7
- SpringBoot2整合Redis,开启缓存,提高访问速度
- CentOS7安装Docker,走上虚拟化容器引擎之路
- Docker使用Oracle官方镜像安装(12C,18C,19C)
- SpringBoot2配置默认Tomcat设置,开启更多高级功能
- Eclipse初始化配置,告别卡顿、闪退、编译时间过长
- Windows10,CentOS7,CentOS8安装Nodejs环境