关于 Python 装饰器的一些个人理解
装饰器
- 本质是一个接受参数为函数的函数。
- 作用:为一个已经实现的方法添加额外的通用功能,比如日志记录、运行计时等。
举例
不带参数的装饰器,不用@
# 不带参数的装饰器 def deco_test(func): def wrapper(*args, **kwargs): print("before function") f = func(*args, **kwargs) print("after function") return f return wrapper def do_something(a,b,c): print(a) time.sleep(1) print(b) time.sleep(1) print(c) return a if __name__ == '__main__': # 不用@ f = deco_test(do_something)("1","2","3")
输出:
before function 1 2 3 after function
个人理解:
相当于在 do_something
函数外面套了两个输出:before function
和 after function
。
不带参数的装饰器,用 @
# 不带参数的装饰器 def deco_test(func): def wrapper(*args, **kwargs): print("before function") f = func(*args, **kwargs) print("after function") return f return wrapper @deco_test def do_something(a,b,c): print(a) time.sleep(1) print(b) time.sleep(1) print(c) return a if __name__ == '__main__': # 使用@ f = do_something("1","2","3")
输出:
before function 1 2 3 after function
个人理解:
相当于执行 do_something
函数的时候,因为有 @
的原因,已经知道有一层装饰器 deco_test
,所以不需要再单独写 deco_test(do_something)
了。
带参数的装饰器
# 带参数的装饰器 def logging(level): def wrapper(func): def inner_wrapper(*args, **kwargs): print("[{level}]: enter function {func}()".format(level=level, func=func.__name__)) f = func(*args, **kwargs) print("after function: [{level}]: enter function {func}()".format(level=level, func=func.__name__)) return f return inner_wrapper return wrapper @logging(level="debug") def do_something(a,b,c): print(a) time.sleep(1) print(b) time.sleep(1) print(c) return a if __name__ == '__main__': # 使用@ f = do_something("1","2","3")
输出:
[debug]: enter function do_something() 1 2 3 after function: [debug]: enter function do_something()
个人理解:
装饰器带了一个参数 level = "debug"
。
最外层的函数 logging()
接受参数并将它们作用在内部的装饰器函数上面。内层的函数 wrapper()
接受一个函数作为参数,然后在函数上面放置一个装饰器。这里的关键点是装饰器是可以使用传递给 logging()
的参数的。
类装饰器
# 类装饰器 class deco_cls(object): def __init__(self, func): self._func = func def __call__(self, *args, **kwargs): print("class decorator before function") f = self._func(*args, **kwargs) print("class decorator after function") return f @deco_cls def do_something(a,b,c): print(a) time.sleep(1) print(b) time.sleep(1) print(c) return a if __name__ == '__main__': # 使用@ f = do_something("1","2","3")
输出:
class decorator before function 1 2 3 class decorator after function
个人理解:
使用一个装饰器去包装函数,返回一个可调用的实例。 因此定义了一个类装饰器。
两层装饰器
# 不带参数的装饰器 def deco_test(func): def wrapper(*args, **kwargs): print("before function") f = func(*args, **kwargs) print("after function") return f return wrapper # 带参数的装饰器 def logging(level): def wrapper(func): def inner_wrapper(*args, **kwargs): print("[{level}]: enter function {func}()".format(level=level, func=func.__name__)) f = func(*args, **kwargs) print("after function: [{level}]: enter function {func}()".format(level=level, func=func.__name__)) return f return inner_wrapper return wrapper @logging(level="debug") @deco_test def do_something(a,b,c): print(a) time.sleep(1) print(b) time.sleep(1) print(c) return a if __name__ == '__main__': # 使用@ f = do_something("1","2","3")
输出:
[debug]: enter function wrapper() before function 1 2 3 after function after function: [debug]: enter function wrapper()
个人理解:
在函数 do_something()
外面先套一层 deco_test()
装饰器,再在最外面套一层 logging()
装饰器。
文档

低调大师中文资讯倾力打造互联网数据资讯、行业资源、电子商务、移动互联网、网络营销平台。
持续更新报道IT业界、互联网、市场资讯、驱动更新,是最及时权威的产业资讯及硬件资讯报道平台。
转载内容版权归作者及来源网站所有,本站原创内容转载请注明来源。
- 上一篇
归纳从文件中读取数据的六种方法-JAVA IO基础总结第2篇
在上一篇文章中,我为大家介绍了《5种创建文件并写入文件数据的方法》,本节我们为大家来介绍6种从文件中读取数据的方法. 另外为了方便大家理解,我为这一篇文章录制了对应的视频:总结java从文件中读取数据的6种方法-JAVA IO基础总结第二篇 Scanner(Java 1.5) 按行读数据及String、Int类型等按分隔符读数据。 Files.lines, 返回Stream(Java 8) 流式数据处理,按行读取 Files.readAllLines, 返回List<String>(Java 8) Files.readString, 读取String(Java 11), 文件最大 2G. Files.readAllBytes, 读取byte[](Java 7), 文件最大 2G. BufferedReader, 经典方式 (Java 1.1 -> forever) 可以说,每一种方法都有自己的适用场景,下文中为大家来一一介绍。 如果您看完我的创作,觉得您有帮助的话,请帮忙点赞,您的支持是我不竭的创作动力! 1.Scanner 第一种方式是Scanner,从JDK1.5...
- 下一篇
message-pipe v1.0.1 发布,支持 Nacos 服务发现
Message Pipe 基于Redis实现的分布式消息顺序消费管道。 GitHub地址:https://github.com/minbox-projects/message-pipe Gitee地址:https://gitee.com/minbox-projects/message-pipe I. 什么是Message Pipe? Message Pipe是基于Redis实现的顺序消息管道,由于内部引入了Redisson分布式锁所以它是线程安全的,多线程情况下也会按照写入管道的顺序执行消费。 Message Pipe采用Client、Server概念进行设计,内部通过grpc-netty来建立消息通道相互通信的长连接,消息的分发由Server负责,而每一个管道内的消息在分发时会通过LoadBalance(负载均衡)的方式来获取在线的Client信息并向Client顺序发送消息。 II. 更新日志 ✨New Features [#39] Client通过 "Cglib动态代理" 的方式实现动态绑定管道 [#40] Client/Server 通过正则表达式进行匹配 "pipeName"...
相关文章
文章评论
共有0条评论来说两句吧...
文章二维码
点击排行
推荐阅读
最新文章
- SpringBoot2整合Thymeleaf,官方推荐html解决方案
- Hadoop3单机部署,实现最简伪集群
- Springboot2将连接池hikari替换为druid,体验最强大的数据库连接池
- Docker安装Oracle12C,快速搭建Oracle学习环境
- CentOS8安装MyCat,轻松搞定数据库的读写分离、垂直分库、水平分库
- CentOS7设置SWAP分区,小内存服务器的救世主
- SpringBoot2整合Redis,开启缓存,提高访问速度
- CentOS8,CentOS7,CentOS6编译安装Redis5.0.7
- CentOS7,CentOS8安装Elasticsearch6.8.6
- SpringBoot2整合MyBatis,连接MySql数据库做增删改查操作