您现在的位置是:首页 > 文章详情

教你如何使用GAN为口袋妖怪上色

日期:2020-03-12点击:390

在之前的Demo中,我们使用了条件GAN来生成了手写数字图像。那么除了生成数字图像以外我们还能用神经网络来干些什么呢?

在本案例中,我们用神经网络来给口袋妖怪的线框图上色。

第一步: 导入使用库

from __future__ import absolute_import, division, print_function, unicode_literals import tensorflow as tf tf.enable_eager_execution() import numpy as np import pandas as pd import os import time import matplotlib.pyplot as plt from IPython.display import clear_output

口袋妖怪上色的模型训练过程中,需要比较大的显存。为了保证我们的模型能在2070上顺利的运行,我们限制了显存的使用量为90%, 来避免显存不足的引起的错误。

config = tf.compat.v1.ConfigProto() config.gpu_options.per_process_gpu_memory_fraction = 0.9 session = tf.compat.v1.Session(config=config)

定义需要使用到的常量。

BUFFER_SIZE = 400 BATCH_SIZE = 1 IMG_WIDTH = 256 IMG_HEIGHT = 256 PATH = 'dataset/' OUTPUT_CHANNELS = 3 LAMBDA = 100 EPOCHS = 10

第二步: 定义需要使用的函数

图片数据加载函数,主要的作用是使用Tensorflow的io接口读入图片,并且放入tensor的对象中,方便后续使用

def load(image_file): image = tf.io.read_file(image_file) image = tf.image.decode_jpeg(image) w = tf.shape(image)[1] w = w // 2 input_image = image[:, :w, :] real_image = image[:, w:, :] input_image = tf.cast(input_image, tf.float32) real_image = tf.cast(real_image, tf.float32) return input_image, real_image

tensor对象转成numpy对象的函数

在训练过程中,我会可视化一些训练的结果以及中间状态的图片。Tensorflow的tensor对象无法直接在matplot中直接使用,因此我们需要一个函数,将tensor转成numpy对象。

def tensor_to_array(tensor1): return tensor1.numpy()

第三步: 数据可视化

我们先来看下我们的训练数据长成什么样。
我们每张数据图片分成了两个部分,左边部分是线框图,我们用来作为输入数据,右边部分是上色图,我们用来作为训练的目标图片。
我们使用上面定义的load函数来加载一张图片看下

input, real = load(PATH+'train/114.jpg') plt.figure() plt.imshow(tensor_to_array(input)/255.0) plt.figure() plt.imshow(tensor_to_array(real)/255.0)

第四步: 数据增强

由于我们的训练数据不够多,我们使用数据增强来增加我们的样本。从而让小样本的数据也能达到更好的效果。

我们采取如下的数据增强方案:

  1. 图片缩放, 将输入数据的图片缩放到我们指定的图片的大小
  2. 随机裁剪
  3. 数据归一化
  4. 左右翻转
def resize(input_image, real_image, height, width): input_image = tf.image.resize(input_image, [height, width], method=tf.image.ResizeMethod.NEAREST_NEIGHBOR) real_image = tf.image.resize(real_image, [height, width], method=tf.image.ResizeMethod.NEAREST_NEIGHBOR) return input_image, real_image
def random_crop(input_image, real_image): stacked_image = tf.stack([input_image, real_image], axis=0) cropped_image = tf.image.random_crop(stacked_image, size=[2, IMG_HEIGHT, IMG_WIDTH, 3]) return cropped_image[0], cropped_image[1]
def random_crop(input_image, real_image): stacked_image = tf.stack([input_image, real_image], axis=0) cropped_image = tf.image.random_crop(stacked_image, size=[2, IMG_HEIGHT, IMG_WIDTH, 3]) return cropped_image[0], cropped_image[1]

我们将上述的增强方案做成一个函数,其中左右翻转是随机进行

@tf.function() def random_jitter(input_image, real_image): input_image, real_image = resize(input_image, real_image, 286, 286) input_image, real_image = random_crop(input_image, real_image) if tf.random.uniform(()) > 0.5: input_image = tf.image.flip_left_right(input_image) real_image = tf.image.flip_left_right(real_image) return input_image, real_image

数据增强的效果

plt.figure(figsize=(6, 6)) for i in range(4): input_image, real_image = random_jitter(input, real) plt.subplot(2, 2, i+1) plt.imshow(tensor_to_array(input_image)/255.0) plt.axis('off') plt.show()

第五步: 训练数据的准备

定义训练数据跟测试数据的加载函数

def load_image_train(image_file): input_image, real_image = load(image_file) input_image, real_image = random_jitter(input_image, real_image) input_image, real_image = normalize(input_image, real_image) return input_image, real_image
def load_image_test(image_file): input_image, real_image = load(image_file) input_image, real_image = resize(input_image, real_image, IMG_HEIGHT, IMG_WIDTH) input_image, real_image = normalize(input_image, real_image) return input_image, real_image

使用tensorflow的DataSet来加载训练和测试数据, 定义我们的训练数据跟测试数据集对象

train_dataset = tf.data.Dataset.list_files(PATH+'train/*.jpg') train_dataset = train_dataset.map(load_image_train, num_parallel_calls=tf.data.experimental.AUTOTUNE) train_dataset = train_dataset.cache().shuffle(BUFFER_SIZE) train_dataset = train_dataset.batch(1)
test_dataset = tf.data.Dataset.list_files(PATH+'test/*.jpg') test_dataset = test_dataset.map(load_image_test) test_dataset = test_dataset.batch(1)

第六步: 定义模型

口袋妖怪的上色,我们使用的是GAN模型来训练, 相比上个条件GAN生成手写数字图片,这次的GAN模型的复杂读更加的高。
我们先来看下生成网络跟判别网络的整体结构

生成网络

生成网络使用了U-Net的基本框架,编码阶段的每一个Block我们使用, 卷积层->BN层->LeakyReLU的方式。解码阶段的每一个Block我们使用, 反卷积->BN层->Dropout或者ReLU。其中前三个Block我们使用Dropout, 后面的我们使用ReLU。每一个编码层的Block输出还连接了与之对应的解码层的Block. 具体可以参考U-Net的skip connection.

定义编码Block

def downsample(filters, size, apply_batchnorm=True): initializer = tf.random_normal_initializer(0., 0.02) result = tf.keras.Sequential() result.add(tf.keras.layers.Conv2D(filters, size, strides=2, padding='same', kernel_initializer=initializer, use_bias=False)) if apply_batchnorm: result.add(tf.keras.layers.BatchNormalization()) result.add(tf.keras.layers.LeakyReLU()) return result down_model = downsample(3, 4)

定义解码Block

def upsample(filters, size, apply_dropout=False): initializer = tf.random_normal_initializer(0., 0.02) result = tf.keras.Sequential() result.add(tf.keras.layers.Conv2DTranspose(filters, size, strides=2, padding='same', kernel_initializer=initializer, use_bias=False)) result.add(tf.keras.layers.BatchNormalization()) if apply_dropout: result.add(tf.keras.layers.Dropout(0.5)) result.add(tf.keras.layers.ReLU()) return result up_model = upsample(3, 4)

定义生成网络模型

def Generator(): down_stack = [ downsample(64, 4, apply_batchnorm=False), # (bs, 128, 128, 64) downsample(128, 4), # (bs, 64, 64, 128) downsample(256, 4), # (bs, 32, 32, 256) downsample(512, 4), # (bs, 16, 16, 512) downsample(512, 4), # (bs, 8, 8, 512) downsample(512, 4), # (bs, 4, 4, 512) downsample(512, 4), # (bs, 2, 2, 512) downsample(512, 4), # (bs, 1, 1, 512) ] up_stack = [ upsample(512, 4, apply_dropout=True), # (bs, 2, 2, 1024) upsample(512, 4, apply_dropout=True), # (bs, 4, 4, 1024) upsample(512, 4, apply_dropout=True), # (bs, 8, 8, 1024) upsample(512, 4), # (bs, 16, 16, 1024) upsample(256, 4), # (bs, 32, 32, 512) upsample(128, 4), # (bs, 64, 64, 256) upsample(64, 4), # (bs, 128, 128, 128) ] initializer = tf.random_normal_initializer(0., 0.02) last = tf.keras.layers.Conv2DTranspose(OUTPUT_CHANNELS, 4, strides=2, padding='same', kernel_initializer=initializer, activation='tanh') # (bs, 256, 256, 3) concat = tf.keras.layers.Concatenate() inputs = tf.keras.layers.Input(shape=[None,None,3]) x = inputs skips = [] for down in down_stack: x = down(x) skips.append(x) skips = reversed(skips[:-1]) for up, skip in zip(up_stack, skips): x = up(x) x = concat([x, skip]) x = last(x) return tf.keras.Model(inputs=inputs, outputs=x) generator = Generator()

判别网络

判别网络我们使用PatchGAN, PatchGAN又称之为马尔可夫判别器。传统的基于CNN的分类模型有很多都是在最后引入了一个全连接层,然后将判别的结果输出。然而PatchGAN却不一样,它完全由卷积层构成,最后输出的是一个纬度为N的方阵。然后计算矩阵的均值作真或者假的输出。从直观上看,输出方阵的每一个输出,是模型对原图中的一个感受野,这个感受野对应了原图中的一块地方,也称之为Patch,因此,把这种结构的GAN称之为PatchGAN。

PatchGAN中的每一个Block是由卷积层->BN层->Leaky ReLU组成的。

在我们的这个模型中,最后一层我们的输出的纬度是(Batch Size, 30, 30, 1), 其中1表示图片的通道。

每个30x30的输出对应着原图的70x70的区域。详细的结构可以参考这篇论文

 def Discriminator(): initializer = tf.random_normal_initializer(0., 0.02) inp = tf.keras.layers.Input(shape=[None, None, 3], name='input_image') tar = tf.keras.layers.Input(shape=[None, None, 3], name='target_image') # (batch size, 256, 256, channels*2) x = tf.keras.layers.concatenate([inp, tar]) # (batch size, 128, 128, 64) down1 = downsample(64, 4, False)(x) # (batch size, 64, 64, 128) down2 = downsample(128, 4)(down1) # (batch size, 32, 32, 256) down3 = downsample(256, 4)(down2) # (batch size, 34, 34, 256) zero_pad1 = tf.keras.layers.ZeroPadding2D()(down3) # (batch size, 31, 31, 512) conv = tf.keras.layers.Conv2D(512, 4, strides=1, kernel_initializer=initializer, use_bias=False)(zero_pad1) batchnorm1 = tf.keras.layers.BatchNormalization()(conv) leaky_relu = tf.keras.layers.LeakyReLU()(batchnorm1) # (batch size, 33, 33, 512) zero_pad2 = tf.keras.layers.ZeroPadding2D()(leaky_relu) # (batch size, 30, 30, 1) last = tf.keras.layers.Conv2D(1, 4, strides=1, kernel_initializer=initializer)(zero_pad2) return tf.keras.Model(inputs=[inp, tar], outputs=last) discriminator = Discriminator()

第七步: 定义损失函数和优化器

**
**

loss_object = tf.keras.losses.BinaryCrossentropy(from_logits=True)

**

 def discriminator_loss(disc_real_output, disc_generated_output): real_loss = loss_object(tf.ones_like(disc_real_output), disc_real_output) generated_loss = loss_object(tf.zeros_like(disc_generated_output), disc_generated_output) total_disc_loss = real_loss + generated_loss return total_disc_loss
def generator_loss(disc_generated_output, gen_output, target): gan_loss = loss_object(tf.ones_like(disc_generated_output), disc_generated_output) l1_loss = tf.reduce_mean(tf.abs(target - gen_output)) total_gen_loss = gan_loss + (LAMBDA * l1_loss) return total_gen_loss
generator_optimizer = tf.keras.optimizers.Adam(2e-4, beta_1=0.5) discriminator_optimizer = tf.keras.optimizers.Adam(2e-4, beta_1=0.5)

第八步: 定义CheckPoint函数

由于我们的训练时间较长,因此我们会保存中间的训练状态,方便后续加载继续训练

checkpoint = tf.train.Checkpoint(generator_optimizer=generator_optimizer, discriminator_optimizer=discriminator_optimizer, generator=generator, discriminator=discriminator)

如果我们保存了之前的训练的结果,我们加载保存的数据。然后我们应用上次保存的模型来输出下我们的测试数据。

def generate_images(model, test_input, tar): prediction = model(test_input, training=True) plt.figure(figsize=(15,15)) display_list = [test_input[0], tar[0], prediction[0]] title = ['Input', 'Target', 'Predicted'] for i in range(3): plt.subplot(1, 3, i+1) plt.title(title[i]) plt.imshow(tensor_to_array(display_list[i]) * 0.5 + 0.5) plt.axis('off') plt.show()
ckpt_manager = tf.train.CheckpointManager(checkpoint, "./", max_to_keep=2) if ckpt_manager.latest_checkpoint: checkpoint.restore(ckpt_manager.latest_checkpoint) for inp, tar in test_dataset.take(20): generate_images(generator, inp, tar)

第九步: 训练

在训练中,我们输出第一张图片来查看每个epoch给我们的预测结果带来的变化。让大家感受到其中的乐趣
每20个epoch我们保存一次状态

@tf.function def train_step(input_image, target): with tf.GradientTape() as gen_tape, tf.GradientTape() as disc_tape: gen_output = generator(input_image, training=True) disc_real_output = discriminator([input_image, target], training=True) disc_generated_output = discriminator([input_image, gen_output], training=True) gen_loss = generator_loss(disc_generated_output, gen_output, target) disc_loss = discriminator_loss(disc_real_output, disc_generated_output) generator_gradients = gen_tape.gradient(gen_loss, generator.trainable_variables) discriminator_gradients = disc_tape.gradient(disc_loss, discriminator.trainable_variables) generator_optimizer.apply_gradients(zip(generator_gradients, generator.trainable_variables)) discriminator_optimizer.apply_gradients(zip(discriminator_gradients, discriminator.trainable_variables))
def fit(train_ds, epochs, test_ds): for epoch in range(epochs): start = time.time() for input_image, target in train_ds: train_step(input_image, target) clear_output(wait=True) for example_input, example_target in test_ds.take(1): generate_images(generator, example_input, example_target) if (epoch + 1) % 20 == 0: ckpt_save_path = ckpt_manager.save() print ('保存第{}个epoch到{}\n'.format(epoch+1, ckpt_save_path)) print ('训练第{}个epoch所用的时间为{:.2f}秒\n'.format(epoch + 1, time.time()-start))
fit(train_dataset, EPOCHS, test_dataset)

训练第8个epoch所用的时间为51.33秒。

第十步: 使用测试数据上色,查看下我们的效果

for input, target in test_dataset.take(20): generate_images(generator, input, target)

矩池云现在已经上架 “口袋妖怪上色” 镜像;感兴趣的小伙伴可以通过矩池云官网“Jupyter 教程 Demo” 镜像中尝试使用。

原文链接:https://yq.aliyun.com/articles/749452
关注公众号

低调大师中文资讯倾力打造互联网数据资讯、行业资源、电子商务、移动互联网、网络营销平台。

持续更新报道IT业界、互联网、市场资讯、驱动更新,是最及时权威的产业资讯及硬件资讯报道平台。

转载内容版权归作者及来源网站所有,本站原创内容转载请注明来源。

文章评论

共有0条评论来说两句吧...

文章二维码

扫描即可查看该文章

点击排行

推荐阅读

最新文章