数据增强技术如何实现场景落地与业务增值?
有人说,「深度学习“等于”深度卷积神经网络算法模型+大规模数据+云端分布式算力」。也有人说,「能够在业内叱咤风云的AI都曾“身经百战”,经历过无数次的训练与试错」。以上都需要海量数据做依托,对于那些数据量匮乏的领域,就衍生出了数据增强技术。即,根据一个原始数据,稍作改动,变成一个对于AI来说的全新的数据。
01 为什么做数据增强?
数据规模的重要性到底怎样呢?可以说,深度学习的火热和蓬勃发展,直接源于普林斯顿大学教授李飞飞及她所带领的团队创作的一个包含百万级图片的数据集ImageNet。工业级人脸识别模型的训练,也是动辄百万级、千万级的人脸图片数量。深度学习是基于大数据的一种方法,我们当然希望数据的规模越大、质量越高越好,模型才能够有着更好的泛化能力。但大家都知道,海量数据的标注是一件非常庞大、非常耗时耗力耗金的工作,能标注的数据往往十分有限,同时,我们希望数据能覆盖各种场景,然而实际采集数据的时候,往往很难覆盖掉全部的场景。这时数据增强是扩充数据样本规模的一种有效的方法。
02 如何进行数据增强?
数据增强可以分为常规的数据增强和特殊的数据增强。常规的数据增强方法又可分为:空间几何变换类(水平垂直翻转、随机裁剪、旋转、仿射变换、透视变换)、色彩类(随机亮度、饱和度、色调)、噪声类(椒盐噪声、高斯噪声、频域噪声)、随机擦除、锐化、模糊等;然而,特殊的数据增强有着各种各样的形式,为应对不同的视觉任务以及应用场景,所采用的增强方式也会随之不同。对于某个深度学习任务,并非所有的数据增强方法都有作用,接下来将详细介绍StartDT AI Lab是如何采用数据增强技术实现场景落地与业务增值的。
商品检测、分类任务中的数据增强技术
“无人货柜”、“无人店”等应用场景下,智能算法引擎的任务就是检测并识别商品。为了提高我们视觉模型的精度与泛化能力,除了采用一些常规的数据增强外,我们还使用了多样本融合的数据增强,例如Mix-up、Sample-Pairing等。Mix-up是一种将多张图片按一定权值融合在一起的数据增强方法;此外,一些基于强化学习的数据增强方式也给我们带来了相当可观的算法收益,例如谷歌的Auto-Augment。Auto-Augment的做法是通过强化学习的方法,以不同的数据增强方法为搜索空间,搜索对于当前深度学习任务有效的数据增强方法的组合;另外,还有一些增强正样本或负样本以控制正负样本均衡的数据增强方法。
人脸识别中的数据增强技术
人脸数据的不同个体之间相似程度较高,并且涉及个人隐私问题,这些问题给人脸数据的收集、清洗以及标注工作带来了巨大的困难与挑战。此外,人脸识别在我们的实际应用场景属于开放性场景,摄像头的安装位置、光照、遮挡等等因素造成了人脸数据分布的不确定性与复杂性。公开数据集虽然在数量级上较为可观,但是其仍然存在一定问题。不同Face ID下的图片个数、人脸的姿态、光照条件、图像质量等存在巨大差异,造成了样本不均衡。如果直接采用这些数据进行算法模型训练,很难满足实际应用的需求。为此,我们采用了数据增强技术很大程度上解决了以上问题。
✨人脸姿态变换:采用传统图像处理算法与GAN生成对抗网络结合的方式,实现通过单幅人脸图像模拟任意姿态的人脸图像。
人脸姿态变化
✨人脸属性修改:利用GAN生成对抗网络,实现人脸属性的修改,包括表情、配饰、发型等。
人脸属性修改(眼镜佩戴与否)
✨结合传统方法和深度学习方法:对人脸图像进行去(加)噪、去(模拟)模糊、超分辨(降质)等处理,从而获取不同质量的人脸数据。
行人重识别中的数据增强技术
在“奇点识客”系统中,RE ID(行人重识别)技术作为人脸识别技术的一个重要补充,用于行人跨域追踪。然而,现场摄像头画面之间、现场摄像头画面行人数据分布与公开数据集之间都存在巨大domain差异,因此采用公开数据集训练的Re-ID模型在该场景下的准确率较低,无法满足实际需求。针对此问题,我们采用生成对抗网络(GAN)将公开数据集中的行人转化成实际场景下的图像风格,重新进行训练后,模型准确率提升了50%以上。此外,我们还通过GAN的方式实现行人姿态的变化,以提高数据集的多样性;通过注意力机制,强化学习行人除衣着之外的特征(头部,四肢等),以解决行人换衣导致的准确率下降的问题。
行人风格转换
数据增强是增大数据规模,减轻模型过拟合的有效方法,数据增强技术作为视觉智能引擎的助燃剂,不断为之提供动力,并为StartDT AI Lab的算法落地提供强有力的支持。

低调大师中文资讯倾力打造互联网数据资讯、行业资源、电子商务、移动互联网、网络营销平台。
持续更新报道IT业界、互联网、市场资讯、驱动更新,是最及时权威的产业资讯及硬件资讯报道平台。
转载内容版权归作者及来源网站所有,本站原创内容转载请注明来源。
- 上一篇
今天聊聊怎么给表写入数据
上期给大家将了,如何在交互式分析中高效建表,并构建表索引以及给表设置属性,以期在同等资源情况下,能更快的查询到表数据。往期精彩传送门:今天来聊聊怎么高效建表。今天小编就来为大家讲讲如何把数据写入进表里。 当前版本的交互式分析支持的数据写入来源有:MaxCompute、实时计算(Flink)以及交互式分析这3种,当前交互式分析支持insert into select 和insert into vaues两种标准的PG表达方式,可以写入部分字段,也可以写入全部字段,下面就以分区表和非分区表两种场景来将,如何将数据写入表中。 场景1:将数据写进非分区表中 1.建一张非分区表 CREATE TABLE holo_test ( id int8 NOT NULL, age int8, name text, born timestamptz, class text, tel text, PRIMARY KEY (id) ); CALL SET_TABLE_PROPERTY('holo_test', 'orientation', 'column'); 2.两种方式导入数据 //方式1: INSERT ...
- 下一篇
12月21日云栖号头条:5G基站数量,中国将会是美国的15倍?
云栖号:https://www.aliyun.com/#module-yedOfott8第一手的上云资讯,不同行业精选的上云企业案例库,基于众多成功案例萃取而成的最佳实践,助力您上云决策! 今日最新云头条快讯:随着第四次工业革命来临,美国已经落后了。尽管美国在从AI到5G等技术创新方面仍然处于领先地位,但美国正落后于商业化竞赛;NVIDIA和阿里巴巴共同透露了一个小“秘密”——原来,双11 2684亿元创纪录成交额的背后,离不开NVIDIA GPU的大规模部署;当手机铃声响起,电话里陌生的小姐姐用温柔甜美但装腔作势的声音,你就知道:又是个机器人打来的电话,一起来看最新的资讯: 5G基站数量,中国是美国的15倍 华盛顿邮报报道,到今年年底,中国将建设完成大约150000个5G基站,这一数量是美国的15倍。如果AI是新“电力”,那么5G就是使能AI发挥到最佳性能所需的传输和分配基础设施。以5G为基础的新“数字高速公路”将驱动以前我们无法想象的新行业和新服务。目前,美国实际上只有其实是4G网络的“5G E”,这无法替代真正具有竞争力的5G网络。而在中国,已经有50多个城市在使用5G。 AI...
相关文章
文章评论
共有0条评论来说两句吧...
文章二维码
点击排行
推荐阅读
最新文章
- SpringBoot2全家桶,快速入门学习开发网站教程
- CentOS6,CentOS7官方镜像安装Oracle11G
- SpringBoot2编写第一个Controller,响应你的http请求并返回结果
- SpringBoot2更换Tomcat为Jetty,小型站点的福音
- CentOS7安装Docker,走上虚拟化容器引擎之路
- MySQL8.0.19开启GTID主从同步CentOS8
- CentOS8编译安装MySQL8.0.19
- CentOS8,CentOS7,CentOS6编译安装Redis5.0.7
- CentOS7,CentOS8安装Elasticsearch6.8.6
- SpringBoot2整合MyBatis,连接MySql数据库做增删改查操作