“2017鸡年”数据分析市场的10个预测
【大咖・来了 第7期】10月24日晚8点观看《智能导购对话机器人实践》
在2016年,是数据准备和分析突破的一年。 采用自助式分析解决方案的速度飞快发展起来,因为业务用户需要能够分析数据而不必再依赖IT。 自助数据准备工具也经历了快速增长,因为越来越多的数据用户意识到这项技术可以通过快速找到并访问来自任何来源的数据来节省他们巨大的时间,预算和资源,然后准备在几分之一的时间内进行分析它使用电子表格和其他手动强化措施。 而这一趋势将继续扩大到2017年,事实上,巨大的机会在前面。 我们将继续看到尽可能多的创新,这些创新将持续改变数据科学家,数据分析师和业务用户如何利用洞察力来实现企业价值并改进运营流程。
数据准备和分析领域在2016年取得了巨大的增长,包括自助服务工具的兴起。 那么明年的空间会怎样?
数据社会化将成为大事
自助服务分析无意中致使许多公司的数据格局变得像狂野西部。 数据现在分布在整个组织中,并且经常被孤立地管理。 数据和分析结果没有被共享和重用,相反,用户没有体会到重复数据建模的好处,而是需要从头开始进行每个项目的分析。 此外,由于分布式架构,IT部门在管理和保护这些信息方面还处于挣扎之中。
自助数据准备服务将彻底变革
这种变革性的新功能将传统的自助服务数据准备优势与社交媒体平台常见的关键属性相结合,使数据科学家,业务分析师甚至公司的新手业务用户都能够搜索,共享和重用准备好的管理数据,从而更好的进行商业决策。 公司将通过使用集中的,具有合规性的,获批准的数据源,进行更安心的数据治理。
认证的数据集将升级
因为数据分布在整个组织中,用户经常在隔离中工作,所以信息变得不可控和不可预测。 信息治理不善会增加安全性和合规性风险,并导致较差的数据质量。 因此,数据分析师和业务用户经常不信任其来源,并且缺乏对数据准确性,及时性和有效性的信心。
数据湖将变得不那么重要
许多公司已经尝试在中央存储器实现数据湖,但是该方法已经证明很大程度上不成功。 数据用户通常难以找到并访问正确的数据进行分析。 在2017年,我们将看到由IT和数据分析师创建的认证数据集的兴起,它验证了不同来源的分组,并允许业务用户轻松访问。 跨部门共享这些经过认证的数据集将确保数据质量,增强对数据,分析流程和结果的信任。
数据质量和数据准备将开始融合
数据质量和数据准备现在是两个单独、不同的功能。 但随着他们的发展,数据准备解决方案现在已经融入了许多数据质量能力,而数据质量供应商正在解决数据准备问题。 在2017年,数据质量和数据准备将趋于一致,组织将更好地了解如何实施两者的功能以获得***的分析结果。
物联网数据将推动时间序列数据库的需求
越来越多的公司开始使用互联网的物联网数据来进行分析。 但是他们发现,将这些信息放到没有能力有效地分析来自物联网设备的数据的存储库中不再有效。 由于物联网设备及其生产的实时数据,明年我们将看到对时间序列数据库的需求以及实时数据准备功能的上升。
机器学习将产生更多的智能数据
机器学习或算法分析是在数据被清理,准备和分析之前对数据进行应用智能,从而产生更好的数据集。 通过使用智能数据,用户可以洞察其他人做了什么,以及它如何补充其他数据集,以提高分析过程。在新的一年里,我们将看到更多的组织利用智能数据进行分析和改进操作流程。
高级分析将变得更加普遍
高级分析的过程在传统上往往被委托给数据科学家。 但更多的供应商正在将高级分析功能添加到他们的解决方案中,使业务用户能够处理这一过程以获得预测性的洞察力。 在2017年,我们将看到高级分析从新颖性转变为驱动公司运营的核心能力。
虚拟化和云计算将至高无上
数据虚拟化将成为更受欢迎的分析处理。 这是个充满希望的技术。 它降低成本,因为组织不需要创建仓库; 它有助于实时分析,因为数据不需要移动; 并提高敏捷性,使用户能够更快地分析更多来源。
数据虚拟化将获得绿灯
数据虚拟化在过去的几年间存在着多重阻碍,致使其不被用于分析。 虽然挑战仍然存在,但是我们将在2017年再次对这项技术感兴趣,主要是由于供应商将数据虚拟化与数据准备相结合,创建了一种以较低成本提供自助服务敏捷性的信息架构。 在云计算中,我们将看到该技术的突出程度将在2017年达到了一个全新的水平,与本地系统相比,更多的数据访问和存储将基于云的数据仓库。

低调大师中文资讯倾力打造互联网数据资讯、行业资源、电子商务、移动互联网、网络营销平台。
持续更新报道IT业界、互联网、市场资讯、驱动更新,是最及时权威的产业资讯及硬件资讯报道平台。
转载内容版权归作者及来源网站所有,本站原创内容转载请注明来源。
- 上一篇
2017年大数据发展十大新趋势
【大咖・来了 第7期】10月24日晚8点观看《智能导购对话机器人实践》 2017年大数据产业发展趋势是非结构化开放的,Hadoop继续称霸,外加数据可视化使用垃圾数据谜续,具体预测如下: 1.非结构化高于结构化数据量 一类信息能够用数据或统一的结构加以表示,我们称之为结构化数据,如数字、符号;而另一类信息无法用数字或统一的结构表示,如文本、图像、声音、网页等,我们称之为非结构化数据。结构化数据属于非结构化数据,是非结构化数据的特例,今年非结构化数据将要凸显占领结构化高度广度。 2.结构化数据安全性高于非结构化数据 结构化数据的存在至少有40年之久,这种数据存储在数据库里,可以用二维表结构来逻辑表达实现数据,因此加密方式多样化,安全性高,相比非结构化数据最近几年才兴起,它是以图片,音频,视频,文档形式存在,加密繁琐困难,安全性低,然而二者属于包含的关系,多数企业更倾向于以结构化数据的形态存在。 3.大数据产生在非结构化数据库里 结构化数据分析的历史已经很久了,至少在计算机数值计算开始的时候就有了,说已经有四十年也不为过,新闻,视频,图片,音频,网页这些形态每天在数以万计的产生庞大的数据量...
- 下一篇
2017年,这两个大数据岗位一定会火!
【大咖・来了 第7期】10月24日晚8点观看《智能导购对话机器人实践》 讨论哪个大数据岗位会火之前,我们先来简单的分析一下大数据领域的行情,这里重点说一下当前的情况。 2016年,互联网行业遇到了资本寒冬,抛开大公司不说,一些中小型的公司不断的缩减预算,因为很难融到钱。 但是从大数据这个角度出发去看的话,会发现即使其他类型的技术岗位行情不太好,但大数据领域一直还是不错的,这一方面国内大数据政策推动的原因,另一方面是中小型的公司想拿到钱那必须有可谈的技术故事,是的,那就是数据,或者说数据驱动。 所以,不管怎么说,17年,整体大数据领域的整体市场需求还是偏良性的(相对于其他技术类型来说)。 但是,受14年开始,大数据培训市场批量水流线生产大数据工程师的影响,目前大数据需求市场会有些小混乱,所谓混乱是指技术水平参差不齐,包括大量打着大数据旗号的传统数据库工程师(这个很大一部分原因也是培训机构造成的);企业需求招聘不清晰、对大数据岗位定位混乱。 这种乱象,从身边获取的简历,各种招聘现象,以及各种大数据讨论社群的相关话题讨论中可以看出。 并且这种乱象会持续比较长的一段时间,直到接受正统知识体系教...
相关文章
文章评论
共有0条评论来说两句吧...
文章二维码
点击排行
推荐阅读
最新文章
- Eclipse初始化配置,告别卡顿、闪退、编译时间过长
- Windows10,CentOS7,CentOS8安装Nodejs环境
- CentOS7,8上快速安装Gitea,搭建Git服务器
- Docker快速安装Oracle11G,搭建oracle11g学习环境
- CentOS6,7,8上安装Nginx,支持https2.0的开启
- CentOS6,CentOS7官方镜像安装Oracle11G
- SpringBoot2整合MyBatis,连接MySql数据库做增删改查操作
- Docker安装Oracle12C,快速搭建Oracle学习环境
- SpringBoot2编写第一个Controller,响应你的http请求并返回结果
- CentOS8,CentOS7,CentOS6编译安装Redis5.0.7