您现在的位置是:首页 > 文章详情

数据结构-哈夫曼树(python实现)

日期:2019-07-22点击:346

数据结构-哈夫曼树(python实现)
好,前面我们介绍了一般二叉树、完全二叉树、满二叉树,这篇文章呢,我们要介绍的是哈夫曼树。
哈夫曼树也叫最优二叉树,与哈夫曼树相关的概念还有哈夫曼编码,这两者其实是相同的。哈夫曼编码是哈夫曼在1952年提出的。现在哈夫曼编码多应用在文本压缩方面。接下来,我们就来介绍哈夫曼树到底是个什么东西?哈夫曼编码又是什么,以及它如何应用于文本压缩。

哈夫曼树(Huffman Tree)
给定n个权值作为n个叶子结点,构造一棵二叉树,若该树的带权路径长度达到最小,称这样的二叉树为最优二叉树,也称为哈夫曼树(Huffman Tree)。哈夫曼树是带权路径长度最短的树,权值较大的结点离根较近。

首先,我们有这样一些数据:

sourceData = [('a', 8), ('b', 5), ('c', 3), ('d', 3), ('e', 8), ('f', 6), ('g', 2), ('h', 5), ('i', 9), ('j', 5), ('k', 7), ('l', 5), ('m', 10), ('n', 9)]
每一个数据项是一个元组,元组的第一项是数据内容,第二项是该数据的权重。也就是说,用于构建哈夫曼树的数据是带权重的。假设这些数据里面的字母a-n的权重是根据这些字母在y一个文本出出现的概率计算得出的,字母出现的概率越高,则该字母的权重越大。例如字母 a 的权重为 8 .

好,拿到数据我们就可以来构建哈夫曼树了。

首先,找出所有元素中权重最小的两个元素,即g(2)和c(3),
以g和c为子节点构建二叉树,则构建的二叉树的父节点的权重为 2+3 = 5.
从除g和c以外剩下的元素和新构建的权重为5的节点中选出权重最小的两个节点,
进行第 2 步操作。
以此类推,直至最后合成一个二叉树就是哈夫曼树。

我们用图例来表示一下:

好,这里我们的哈夫曼树就构建好了,节点中字母后面的数字表示该字母的权重,就是前面给定的数据。在这里我要强调的是,同样的数据创建的哈夫曼树并不是唯一的,所以只要按照规则一步一步没有出错,你的哈夫曼树就是正确的。

我们现在将访问左节点定义为0,访问右节点定义为1.则我们现在访问字母a,则它的编码为0110,访问字母n的编码为111,这个编码就是哈夫曼编码。

通过比对不同字母的哈夫曼编码,你发现了什么?

权重越大的字母对应的哈夫曼编码越短,权重越小的字母对应的哈夫曼编码则越长。也就是说文本中出现概率大的字母编码短,出现概率小的字母编码长。通过这种编码方式来表示文本中的字母,那所得整个文本的编码长度也会缩短。

这就是哈夫曼树也就是哈夫曼编码在文本压缩中的应用。

下面我们用代码来实现:

定义一个二叉树类:

class BinaryTree:

def __init__(self, data, weight): self.data = data self.weight = weight self.left = None self.right = None

获取节点列表中权重最小的两个节点:

定义获取列表中权重最大的两个节点的方法:

def min2(li):

result = [BinaryTree(None, float('inf')), BinaryTree(None, float('inf'))] li2 = [] for i in range(len(li)): if li[i].weight < result[0].weight: if result[1].weight != float('inf'): li2.append(result[1]) result[0], result[1] = li[i], result[0] elif li[i].weight < result[1].weight: if result[1].weight != float('inf'): li2.append(result[1]) result[1] = li[i] else: li2.append(li[i]) return result, li2

定义生成哈夫曼树的方法:

def makeHuffman(source):

m2, data = min2(source) print(m2[0].data, m2[1].data) left = m2[0] right = m2[1] sumLR = left.weight + right.weight father = BinaryTree(None, sumLR) father.left = left father.right = right if data == []: return father data.append(father) return makeHuffman(data)

定义广度优先遍历方法:

递归方式实现广度优先遍历

def breadthFirst(gen, index=0, nextGen=[], result=[]):

if type(gen) == BinaryTree: gen = [gen] result.append((gen[index].data, gen[index].weight)) if gen[index].left != None: nextGen.append(gen[index].left) if gen[index].right != None: nextGen.append(gen[index].right) if index == len(gen)-1: if nextGen == []: return else: gen = nextGen nextGen = [] index = 0 else: index += 1 breadthFirst(gen, index, nextGen,result) return result

输入数据:

某篇文章中部分字母根据出现的概率规定权重

sourceData = [('a', 8), ('b', 5), ('c', 3), ('d', 3), ('e', 8), ('f', 6), ('g', 2), ('h', 5), ('i', 9), ('j', 5), ('k', 7), ('l', 5), ('m', 10), ('n', 9)]
sourceData = [BinaryTree(x[0], x[1]) for x in sourceData]
创建哈夫曼树并进行广度优先遍历:

huffman = makeHuffman(sourceData)
print(breadthFirst(huffman))
OK ,我们的哈夫曼树就介绍到这里了,你还有什么不懂的问题记得留言给我哦。
原文地址https://www.cnblogs.com/dongyangblog/p/11228930.html

原文链接:https://yq.aliyun.com/articles/710348
关注公众号

低调大师中文资讯倾力打造互联网数据资讯、行业资源、电子商务、移动互联网、网络营销平台。

持续更新报道IT业界、互联网、市场资讯、驱动更新,是最及时权威的产业资讯及硬件资讯报道平台。

转载内容版权归作者及来源网站所有,本站原创内容转载请注明来源。

文章评论

共有0条评论来说两句吧...

文章二维码

扫描即可查看该文章

点击排行

推荐阅读

最新文章