您现在的位置是:首页 > 文章详情

(Python)零起步数学+神经网络入门

日期:2018-12-19点击:504

在这篇文章中,我们将在Python中从头开始了解用于构建具有各种层神经网络(完全连接,卷积等)的小型库中的机器学习和代码。最终,我们将能够写出如下内容:

c61aa747573dab2d6f4e4b1d7e6df09483759f6e

假设你对神经网络已经有一定的了解,这篇文章的目的不是解释为什么构建这些模型,而是要说明如何正确实现

逐层

我们这里需要牢记整个框架:

1.     将数据输入神经网络

2.     在得出输出之前,数据从一层流向下一层

3.     一旦得到输出,就可以计算出一个标量误差

4.     最后,可以通过相对于参数本身减去误差的导数来调整给定参数(权重或偏差)。

5.     遍历整个过程。

最重要的一步是第四步我们希望能够拥有任意数量的层,以及任何类型的层。但是如果修改/添加/删除网络中的一个层,网络的输出将会改变,误差也将改变,误差相对于参数的导数也将改变。无论网络架构如何、激活函数如何、损

原文链接:https://yq.aliyun.com/articles/680836
关注公众号

低调大师中文资讯倾力打造互联网数据资讯、行业资源、电子商务、移动互联网、网络营销平台。

持续更新报道IT业界、互联网、市场资讯、驱动更新,是最及时权威的产业资讯及硬件资讯报道平台。

转载内容版权归作者及来源网站所有,本站原创内容转载请注明来源。

文章评论

共有0条评论来说两句吧...

文章二维码

扫描即可查看该文章

点击排行

推荐阅读

最新文章