边缘计算如何层次化部署?
【大咖・来了 第7期】10月24日晚8点观看《智能导购对话机器人实践》
边缘计算强调的是边缘。如果说云计算意味着要将所有的数据都汇总到后端的数据中心处理,那么边缘计算则是在靠近物或数据源头的网络边缘侧实现边缘智能。正是基于这一特性,边缘计算能够实现数据的高频交互、实时传输,因此有望在物联网和人工智能时代大放异彩。相关预测显示,到2020年将有超过500亿的终端与设备联网,未来超过50%的数据需要在网络边缘侧分析、处理与储存。
随着物联网、云计算的发展,边缘计算正在兴起。边缘计算源于工业领域,主要部署在终端设备或者网络节点上,旨在帮助工业生产中的设备,在数据不上传云端的情况下,也能够具有近端的决策控制力。随着边缘计算热度不断升温,边缘计算和雾计算的差别,边缘计算如何分层部署等现实问题,成为业界关注的观点。
边缘计算≠雾计算
如果留意“边缘计算”,就会发现它有个兄弟,叫“雾计算”。大多数发表的文章,对这两个词的解释是差不多的:它们都是相对于“云计算”而言的,在网络边缘,更接近原生数据(物理感知)的地方进行的计算。
此前,我们看到的大多数互联网信息处理模式,都是“端-管-云”的模式。在应用的现场,“端”只负责收集数据、执行指令,而“云”负责所有的数据分析和控制逻辑功能。“边缘计算”或者“雾计算”,就是将部分数据分析和控制逻辑功能,放到应用场景的附近来实现,因而也有一个很形象的叫法——“贴地计算”。
虽然,整体上“边缘计算”和“雾计算”的概念差不多,但其实还是有差别的。
“边缘计算”源自工业领域,主要部署在终端设备或网络接入点上。目前已经普遍存在于工业物联网(嵌入式物联网)应用、制造业、零售、ATM机、智能手机和虚拟/混合现实等领域。边缘计算使得工业生产中的设备,无需云计算的帮助,也能具有近端的决策控制能力。
“雾计算”(Fog Computing),脱壳于“云计算”,是指将云计算的(部分)功能,部署在网络边缘的设备中,局部的集中化计算。它其实是云计算(Cloud Computing)的延伸概念,由思科于2011年提出。
由此可见,“边缘计算”和“雾计算”确实还是有一些差异的。边缘计算主要是在“端”中,这个端是指电子终端设备或传感器;而雾计算还是在“云”中,部署在一定区域内的数据集中站点上。用一个智慧家庭的(WiFi)网络来举例,一个App在手机内进行的脱网计算就是边缘计算,而家庭智能盒子(智能WiFi网关)则是雾计算的主体。
尽管两者有所差别,但目前有一些文章并没有严格区分二者。事实上,由于物联网业务场景广泛,应用在“端”和“网关”上的计算都会有所涉及。所以,既然它们都是相对于“云计算”而言的,那么也就没有必要区分部署的位置(生产设备、传感设备、网关/服务器),一般情况下都以“边缘计算”为表述。
智能分层部署
“边缘计算”和“雾计算”的差异,给我们以启示:物联网中的计算能力,具有分层部署的特征。这个特征,不同于互联网中的云计算部署模式,可以从两个维度来讨论。
参考物联网的边缘架构模型
边缘计算联盟ECC针对边缘计算,定义了四个领域:设备域(感知与控制层)、网络域(连接和网络层)、数据域(存储和服务层)、应用域(业务和智能层)。这四个“层域”就是边缘计算的计算对象。
设备域:边缘计算在这一层,可以对感知的信息直接进行计算处理。比如在视频采集、音频采集中直接部署智能鉴别的能力;又或者像手机一样,能够由语音输入直接转换成文字输出。
网络域:通过部署计算能力,实现各网络协议的自动转换,对数据格式进行标准化处理。要解决物理网中数据异构的问题,就需要在网络域中部署边缘计算,以实现数据格式的标准化和数据传递的标准化(例如将所有的感知数据都换算成MQTT类型数据,并通过HTTP方式传递)。同时,网络域的边缘计算,还能对“融合网络”进行智能化管理,实现网络的冗余,保证网络的安全,并可进一步参与网络的优化工作。
数据域:边缘计算,使得数据管理更智能、存储方式更灵活。首先,边缘计算可以对数据的完整性和一致性进行分析,并进行数据清洗工作,消灭系统中的“脏”数据。其次,边缘计算可以对计算和存储能力以及系统负载进行动态地部署。***,边缘计算还能和云端计算保持高效协同、合理分担运算任务。
应用域:边缘计算提供属地化的业务逻辑和应用智能。它使得应用具有灵便、快速反应的能力,并在离线的情况下(和云端失去联系时),仍能够独立地提供本地化的应用服务。
在物联网贴近用户和应用场景的地方,边缘计算被部署在以上4个层域中。它使得设备具有智能化的感知能力,装配自适应的连接策略和(数字)部署策略,解决系统中的数据异构问题,并提供局部的业务逻辑甚至智能。
参考物联网应用/地域/覆盖范围
从始创的感知数据到终结的云端智能,数据会根据应用的需要而经历多次的汇聚和计算。例如从智慧家庭到智慧城市,海量的数据汇集并非一步到位实现的。此外,数据汇聚的每个阶段中还各有独立的应用和业务,这意味着计算有层级化部署的需要。
智慧城市被分成了四个“物联网(大小)层级”:家、小区、社区、城市(如上图)。这四层各有应用和服务,服务范围和覆盖区域从家到城市逐渐扩大。各层级中有部分应用相对独立,与上下层级无关;而另有一部分应用则会“层层升级”:家庭医生(家)>社区医疗(社区)>医疗卫生(城市)。
从物联网层级的角度来看,云计算和边缘计算的关系,会依据应用来区分:
- 对于各层级独有的业务,只需在对应层级独立部署针对性的计算能力(只需要“云计算”)。
- 对于穿透(关联)多层级的应用,需要从上至下都部署计算能力。下层计算和上层计算的关系就是边缘计算和云计算的关系。“社区医疗-社区”是“家庭医生-家”的“云”,而又是“医疗卫生-城市”的“边缘”。
- “边缘”和“云”的关系互换:针对单个应用,可能会在(物理网的)上层级部署边缘计算,而在下层级部署云计算。
值得一提的是,某个应用(如社区商城)可能会出现下列情况:应用的核心逻辑和预测分析主要部署在“社区”和“小区”中,针对地区人口的喜好售卖消费商品;应用需要从“城市”层级提取一些外部数据(例如商品的全市平均价格等等);应用在“城市”中没有大量的应用域计算需求。若是如此,那么上层的“城市”对于下层的“社区”、“小区”而言就是“边缘”了。理所当然,该应用在“城市”层域中部署的计算能力就是边缘计算。“关系互换”的情况在工业领域可能会更多。例如工业生产中的质量管理、流程管理。
工厂的质量和流程管理系统通常都部署在生产现场,大量的生产数据就保存在“边缘”的网络中。而要实现智能生产,还需要提取许多和质量、供应链有关的外部信息(用户投诉、产品/零部件返修信息、产品生命周期信息、合作方的质量信息等)。这些信息最终会随着物联网,汇集到“边缘”的质量和流程管理系统中进行质量分析、预测。显然,对于质量和流程管理系统来说,自身以外的互联网和物联网,都是边缘网络。
可以预见,工业生产的“云计算”会更多地部署在物联网的边缘,工业生产现场的附近。
根据应用的需要,计算能力会部署在物联网各个(大小)层级中。不管“计算”部署在哪个层级,若承担了现场指挥的主要职责,就属于边缘计算;若承担了大数据和智能化预测的主要职责,就属于云计算。
随着应用在计算部署上的灵活性不断增加,云计算和边缘计算会走向融合,并越来越难区分。当物联网中充满了随处可取、随处即用的通用计算能力时,“泛在计算”将应势而生。
边缘智能是未来
在物联网边缘部署简单的应用逻辑,无法满足多姿多态的物联网应用需求。在靠近应用场景的地方,必须部署一定的智能,才能在物联网边缘构建起健硕的应用生态。
边缘计算本质就是“贴地”的云计算。边缘计算最重要的能力就是继承云计算的智能。就目前的技术发展趋势来看,理论上已经能做到这一点。针对某一种应用,神经网络算法(云计算)在学习了足够多的应用场景后,可先进行“瘦身”(精简),再部署在网络边缘(部署具有智能的边缘计算),从而形成了边缘智能。这样,即使脱离云计算的支撑,边缘智能也能够实现该应用场景的大部分智能。
例如,2017年5月23日,人工智能AlphaGo执白1/4子战胜了柯洁。这其中值得注意的是,那天出战的是“一只”单机版的AlphaGo。
当边缘计算成为边缘智能,可使得局域、边缘的物联网系统具备自治自律的行为能力。自给自足的算力和智能,将使得物联网应用可以摆脱“云计算”而相对独立地运营。
结 语
边缘计算具有层次(“层域”和“层级”)化部署的特性。
一方面,边缘计算部署在边缘架构模型的各个层域上。计算能力在物理网边缘的分层域部署,使得应用在物联网局部(例如智慧家庭),也能够形成“‘感知’-‘连接’-‘分析和预测’-‘控制’”的信息环路。从而,使各类数据的信息价值获得释放。
另一方面,在物联网不同范围(大小层级)中部署计算能力,开发者不仅能根据业务需求和特性构建出大小适合的信息环路,还能使“垂直”业务在各层级之间“环环相扣”,相互服务并实现价值互递。
边缘计算的更高价值是边缘智能。
边缘计算,是智能化云计算的落地部署。应用在物联网局部实现了信息成环,并能够通过边缘计算,实现信息决策、行为反馈、自动组网、负载平衡等全层域的智能化。在脱离云计算的情况下,应用也能够独立地、灵活地运行,从而在应用场景的小范围内形成物联网“生态”(各种类设备之间,形成信息互助服务的机制)。
低调大师中文资讯倾力打造互联网数据资讯、行业资源、电子商务、移动互联网、网络营销平台。
持续更新报道IT业界、互联网、市场资讯、驱动更新,是最及时权威的产业资讯及硬件资讯报道平台。
转载内容版权归作者及来源网站所有,本站原创内容转载请注明来源。
- 上一篇
为什么企业迁移到云?81%的企业只是害怕“错过”
【大咖・来了 第7期】10月24日晚8点观看《智能导购对话机器人实践》 根据数据管理软件及相关服务供应商Commvault公司的一份新报告,IT管理人员担心其业务错过云计算的进步。 如果人们曾经想过为什么这么多公司正在向云端迈进,那么答案可能会让人感到惊讶:那就是害怕错过。根据Commvault公司和CITO Research公司最近的报告,81%的企业业务管理正在拥抱云计算,因为他们担心会错过云计算的进步。 那么,有多少企业高管正在实施这个举动?据报道,93%的受访者表示至少有一些业务被转移到云端。此外,56%的受访者表示已将所有业务移动到云端。 “这项调查明确地证实了Cloud FOMO(错失恐惧症)是真实的,也是企业管理者和其他IT***的想法,他们正在努力将云计算这个新技术前沿的价值带给他们的组织,从增加IT成果转变为增强业务敏捷性的战略驱动力。”CITO研究公司***技术官Dan Woods表示,“研究表明,云计算正在迅速发展,即使企业正在努力了解云计算功能,数据保护和恢复被强调为云计算具有重大业务影响的基础。” Commvault公司解决方案营销高级总监Don Foster...
- 下一篇
更好的指标、更好的云优先策略
【大咖・来了 第7期】10月24日晚8点观看《智能导购对话机器人实践》 对于具有大型复杂IT环境的CIO来说,云优先策略的风险和收益是一个难题。专家建议要使用显著的指标。 有些计算很容易:一家拥有几台运行几个现成应用的服务器的小型公司可以轻松计算出转移到云端的投资回报。 TCE Strategy***执行官、技术和网络安全策略师Bryce Austin表示:“在这种情况下,你很难证明在正常运行时间、刷新系统和性能方面,你会比云上做得更好。” 但是大多数企业在确定可以影响云优先策略并定义成功的指标时,都有一个更为复杂的计算方法,奥斯汀和其他顾问表示。对他们来说,这并不一定是一个纯粹的、明显的成本比较。 这是因为这些组织拥有更复杂的环境,混合了专有和定制的应用/旧版软件和现成的方案。这些企业应用中的某些应用保存有一些数据,它们受到法规限制,规定了可以存储在哪里以及该如何保护。有些应用程序可能需要不间断地运行,而有些应用程序只需要定期运行或在标准工作时间内运行即可。少数应用可能会运行大量数据,或者来回发送数据进行处理,如果在传输过程中出现延迟,那么这些特性就会迅速地增加云成本并制造出麻烦。 ...
相关文章
文章评论
共有0条评论来说两句吧...
文章二维码
点击排行
推荐阅读
最新文章
- SpringBoot2全家桶,快速入门学习开发网站教程
- SpringBoot2配置默认Tomcat设置,开启更多高级功能
- CentOS6,CentOS7官方镜像安装Oracle11G
- Docker快速安装Oracle11G,搭建oracle11g学习环境
- MySQL8.0.19开启GTID主从同步CentOS8
- CentOS7,8上快速安装Gitea,搭建Git服务器
- CentOS7,CentOS8安装Elasticsearch6.8.6
- CentOS8编译安装MySQL8.0.19
- Docker使用Oracle官方镜像安装(12C,18C,19C)
- 设置Eclipse缩进为4个空格,增强代码规范