手把手教你用Python库Keras做预测(附代码)
当你在Keras中选择好最合适的深度学习模型,就可以用它在新的数据实例上做预测了。但是很多初学者不知道该怎样做好这一点,我经常能看到下面这样的问题:
“我应该如何用Keras对我的模型作出预测?”
在本文中,你会学到如何使用Keras这个Python库完成深度学习模型的分类与回归预测。
看完这篇教程,你能掌握以下几点:
现在就让我们开始吧
本文结构
教程共分为三个部分,分别是:
模型确定
在做预测之前,首先得训练出一个最终的模型。你可能选择k折交叉验证或者简单划分训练/测试集的方法来训练模型,这样做的目的是为了合理估计模型在样本集之外数据上的表现(新数据)
当评估完成,这些模型存在的目的也达到了,就可以丢弃他们。接下
