【Hadoop Summit Tokyo 2016】云上Hadoop——从专家的角度解释What、Why和How
本讲义出自SATO Naoki在Hadoop Summit Tokyo 2016上的演讲,主要从What、Why和How三个角度解释了在云上应该如何使用Hadoop,在Why方面,他分享了Hadoop运行在云上的好处;在What方面,主要分享了云上Hadoop的选项以及云上的Hadoop集群以及集群定制等内容;在How方面,主要分享了如何在云上部署Hadoop架构。

低调大师中文资讯倾力打造互联网数据资讯、行业资源、电子商务、移动互联网、网络营销平台。
持续更新报道IT业界、互联网、市场资讯、驱动更新,是最及时权威的产业资讯及硬件资讯报道平台。
转载内容版权归作者及来源网站所有,本站原创内容转载请注明来源。
- 上一篇
【Hadoop Summit Tokyo 2016】LLAP:Hive上的次秒级分析查询
本讲义出自Yuta Imai在Hadoop Summit Tokyo 2016上的演讲,主要分享了为什么选择LLAP,并对于LLAP的相关概念进行了分享,在演讲中还介绍了Hive 2 与LLAP的架构概览,并对于MR、Tez与Tez+LLAP的三种方式进行了比较,并分享了为什么LLAP能够让查询变得更快。
- 下一篇
storm 1.0版本滑动窗口的实现及原理
滑动窗口在监控和统计应用的场景比较广泛,比如每隔一段时间(10s)统计最近30s的请求量或者异常次数,根据请求或者异常次数采取相应措施。在storm1.0版本之前,没有提供关于滑动窗口的实现,需要开发者自己实现滑动窗口的功能(storm1.0以前实现滑动窗口的实现原理可以自行百度)。 原文和作者一起讨论:http://www.cnblogs.com/intsmaze/p/6481588.html 微信:intsmaze 这里主要演示在storm1.0以后如何通过继承storm1.0提供的类来快速开发出窗口滑动的功能。窗口可以从时间或数量上来划分,由如下两个因素决定:窗口的长度,可以是时间间隔或Tuple数量;滑动间隔(sliding Interval),可以是时间间隔或Tuple数量。比如:每两秒统计最近6秒的请求数量;每接收2个Tuple就统计最近接收的6个Tuple的平均值......。 storm1.0支持的时间和数量的排列组合有如下: withWindow(Count windowLength, Count slidingInterval) 每收到slidingInterval...
相关文章
文章评论
共有0条评论来说两句吧...
文章二维码
点击排行
推荐阅读
最新文章
- SpringBoot2整合Thymeleaf,官方推荐html解决方案
- Eclipse初始化配置,告别卡顿、闪退、编译时间过长
- Springboot2将连接池hikari替换为druid,体验最强大的数据库连接池
- 设置Eclipse缩进为4个空格,增强代码规范
- SpringBoot2编写第一个Controller,响应你的http请求并返回结果
- SpringBoot2初体验,简单认识spring boot2并且搭建基础工程
- SpringBoot2配置默认Tomcat设置,开启更多高级功能
- SpringBoot2整合Redis,开启缓存,提高访问速度
- SpringBoot2整合MyBatis,连接MySql数据库做增删改查操作
- SpringBoot2全家桶,快速入门学习开发网站教程