Spark Streaming 的一些问题
Spark Streaming 的一些问题,做选型前关注这些问题可以有效的降低使用风险。
checkpoint
checkpoint 是个很好的恢复机制。但是方案比较粗暴,直接通过序列化的机制写入到文件系统,导致代码变更和配置变更无法生效。实际场景是升级往往比系统崩溃的频率高太多。但是升级需要能够无缝的衔接上一次的偏移量。所以spark streaming在无法容忍数据有丢失的情况下,你需要自己记录偏移量,然后从上一次进行恢复。
我们目前是重写了相关的代码,每次记录偏移量,不过只有在升级的时候才会读取自己记录的偏移量,其他情况都是依然采用checkpoint机制。
Kafka
这个和Spark Streaming相关,也不太相关。说相关是因为Spark 对很多异常处理比较简单。很多是和Kafka配置相关的。我举个例子:
如果消息体太大了,超过 fetch.message.max.bytes=1m,那么Spark Streaming会直接抛出OffsetOutOfRangeException异常,然后停止服务。
对应的错误会从这行代码抛出:
if (!iter.hasNext) {
assert(requestOffset == part.untilOffset, errRanOutBeforeEnd(part))
finished = true
null.asInstanceOf[R]
}
其实就是消费的完成后 实际的消费数据量和预先估计的量不一致。
你在日志中看到的信息其实是这个代码答应出来的:
private def errRanOutBeforeEnd(part: KafkaRDDPartition): String =
s"Ran out of messages before reaching ending offset ${part.untilOffset} " +
s"for topic ${part.topic} partition ${part.partition} start ${part.fromOffset}." + " This should not happen, and indicates that messages may have been lost"
解决办法自然是把 fetch.message.max.bytes 设置大些。
如果你使用Spark Streaming去追数据,从头开始消费kafka,而Kafka因为某种原因,老数据快速的被清理掉,也会引发OffsetOutOfRangeException错误。并且使得Spark Streaming程序异常的终止。
解决办法是事先记录kafka偏移量和时间的关系(可以隔几秒记录一次),然后根据时间找到一个较大的偏移量开始消费。
或者你根据目前Kafka新增数据的消费速度,给smallest获取到的偏移量再加一个较大的值,避免出现Spark Streaming 在fetch的时候数据不存在的情况。
textFileStream
其实使用textFileStream 的人应该也不少。因为可以很方便的监控HDFS上某个文件夹下的文件,并且进行计算。这里我们遇到的一个问题是,如果底层比如是压缩文件,遇到有顺坏的文件,你是跳不过去的,直接会让Spark Streaming 异常退出。 官方并没有提供合适的方式让你跳过损坏的文件。我们目前是通过重写FileInputDStream 等相关类来修正该问题。
内存
Shuffle (尤其是每个周期数据量很大的情况)是Spark Streaming 不可避免的疼痛。譬如,与Kafka的集成, Kafka的分区数决定了你的并行度(我们假设你使用Direct Approach的模式集成)。你为了获得更大的并行度,则需要进行一次repatition。 为了能够避免Shuffle,并且提高Spark Streaming处理的并行度,我们重写了DirectKafkaInputDStream,KafkaRDD,KafkaUtils等类,实现可以按Kafka 分区按倍数扩大并行度。
我们期望官方能够实现将一个Kafka的partition 映射为多个Spark 的partition,避免数据的多次移动。
再次,如果单个Executor 并行度过大,可能也会导致对内存压力增大。在使用Spark Streaming的过程中,我们多次遇到Executor Lost 相关的问题(譬如 shuffle fetch 失败,Task失败重试等),目前比较有效的方式是:
提高Executor 数目
减少单个Executor的 CPU 核数
为了保证处理的效率,请保证CPU总核数保持不变。
监控
Spark Streaming 的UI 上的Executors Tab缺少一个最大的监控,就是Worker内存GC详情。虽然我们可以将这些信息导入到 第三方监控中,然而终究是不如在 Spark UI上展现更加方便。 为此我们也将该功能列入研发计划。

低调大师中文资讯倾力打造互联网数据资讯、行业资源、电子商务、移动互联网、网络营销平台。
持续更新报道IT业界、互联网、市场资讯、驱动更新,是最及时权威的产业资讯及硬件资讯报道平台。
转载内容版权归作者及来源网站所有,本站原创内容转载请注明来源。
- 上一篇
Storm的数据处理编程单元:Bolt 学习整理
Bolt是Topology中的数据处理的单元,也是Storm针对处理过程的编程单元。Topology中所有的处理都是在这些Bolt中完成的,编程人员可以实现自定义的处理过程,例如,过滤、函数、聚集、连接等计算。如果是复杂的计算过程,往往需要多个步骤和使用多个Bolt。 Bolt可以将数据项发送至多个数据流(Stream)。编程人员首先可以使用OutputFieldsDeclarer类的declareStream()方法来声明多个流,指定数据将要发送到的流,然后使用SpoutOutputCollector的emit方法将数据发送。 当声明了一个Bolt的输入流后,可以从其他的组件中接收这些指定的流。当接收某个组件的所有流时,需要在程序中逐个声明接收的过程。InputDeclarer对象默认接收来自某组件默认的流。 //从名称为"1"的组件中接收默认的流。 declarer.shuffleGrouping("1") IBolt 和 IComponent接口 IBolt接口: //在组件的任务初被初始化时,由集群中的工作进程(worker)调用,prepare()用于实例化Bolt的已给运...
- 下一篇
Spark学习之在集群上运行Spark(6)
Spark学习之在集群上运行Spark(6) 1. Spark的一个优点在于可以通过增加机器数量并使用集群模式运行,来扩展程序的计算能力。 2. Spark既能适用于专用集群,也可以适用于共享的云计算环境。 3. Spark在分布式环境中的架构: Created with Raphaël 2.1.0我的操作集群管理器Mesos、YARN、或独立集群管理器N个集群工作节点(执行器进程) Spark集群采用的是主/从结构,驱动器(Driver)节点和所有执行器(executor)节点一起被称为一个Spark应用(application)。 Spark自带的集群管理器被称为独立集群管理器。 4. 驱动器节点 Spark的驱动器是执行程序main()方法的进程。它执行用户编写的用来创建SparkContext、创建RDD,以及进行RDD的转化操作和行动操作的代码。 5. 执行器节点 Spark的执行器节点是一种工作进程,负责在Spark作业中运行任务,任务间相互独立。 两大作用:第一,它们负责运行组成Spark应用的任务,并将结果返回给驱动器进程;第二,它们通过自身的块管理器(Block Ma...
相关文章
文章评论
共有0条评论来说两句吧...
文章二维码
点击排行
推荐阅读
最新文章
- CentOS7设置SWAP分区,小内存服务器的救世主
- CentOS7,8上快速安装Gitea,搭建Git服务器
- CentOS7编译安装Gcc9.2.0,解决mysql等软件编译问题
- Springboot2将连接池hikari替换为druid,体验最强大的数据库连接池
- CentOS8安装MyCat,轻松搞定数据库的读写分离、垂直分库、水平分库
- Windows10,CentOS7,CentOS8安装Nodejs环境
- CentOS7,CentOS8安装Elasticsearch6.8.6
- CentOS8安装Docker,最新的服务器搭配容器使用
- 设置Eclipse缩进为4个空格,增强代码规范
- Docker快速安装Oracle11G,搭建oracle11g学习环境