python堆排序
堆排序介绍
堆排序,顾名思义,就是基于堆。因此先来介绍一下堆的概念。
堆分为最大堆和最小堆,其实就是完全二叉树。最大堆要求节点的元素都要大于其孩子,最小堆要求节点元素都小于其左右孩子,两者对左右孩子的大小关系不做任何要求,其实很好理解。有了上面的定义,我们可以得知,处于最大堆的根节点的元素一定是这个堆中的最大值。其实我们的堆排序算法就是抓住了堆的这一特点,每次都取堆顶的元素,将其放在序列最后面,然后将剩余的元素重新调整为最大堆,依次类推,最终得到排序的序列。
- 步骤:
- 堆排序就是把堆顶的最大数取出,
将剩余的堆继续调整为最大堆,具体过程在第二块有介绍,以递归实现
剩余部分调整为最大堆后,再次将堆顶的最大数取出,再将剩余部分调整为最大堆,这个过程持续到剩余数只有一个时结束
#_*_coding:utf-8_*_ __author__ = 'Alex Li' import time,random def sift_down(arr, node, end): root = node #print(root,2*root+1,end) while True: # 从root开始对最大堆调整 child = 2 * root +1 #left child if child > end: #print('break',) break print("v:",root,arr[root],child,arr[child]) print(arr) # 找出两个child中交大的一个 if child + 1 <= end and arr[child] < arr[child + 1]: #如果左边小于右边 child += 1 #设置右边为大 if arr[root] < arr[child]: # 最大堆小于较大的child, 交换顺序 tmp = arr[root] arr[root] = arr[child] arr[child]= tmp # 正在调整的节点设置为root #print("less1:", arr[root],arr[child],root,child) root = child # #[3, 4, 7, 8, 9, 11, 13, 15, 16, 21, 22, 29] #print("less2:", arr[root],arr[child],root,child) else: # 无需调整的时候, 退出 break #print(arr) print('-------------') def heap_sort(arr): # 从最后一个有子节点的孩子还是调整最大堆 first = len(arr) // 2 -1 for i in range(first, -1, -1): sift_down(arr, i, len(arr) - 1) #[29, 22, 16, 9, 15, 21, 3, 13, 8, 7, 4, 11] print('--------end---',arr) # 将最大的放到堆的最后一个, 堆-1, 继续调整排序 for end in range(len(arr) -1, 0, -1): arr[0], arr[end] = arr[end], arr[0] sift_down(arr, 0, end - 1) #print(arr) def main(): # [7, 95, 73, 65, 60, 77, 28, 62, 43] # [3, 1, 4, 9, 6, 7, 5, 8, 2, 10] #l = [3, 1, 4, 9, 6, 7, 5, 8, 2, 10] #l = [16,9,21,13,4,11,3,22,8,7,15,27,0] array = [16,9,21,13,4,11,3,22,8,7,15,29] #array = [] #for i in range(2,5000): # #print(i) # array.append(random.randrange(1,i)) print(array) start_t = time.time() heap_sort(array) end_t = time.time() print("cost:",end_t -start_t) print(array) #print(l) #heap_sort(l) #print(l) if __name__ == "__main__": main()
dataset = [16,9,21,3,13,14,23,6,4,11,3,15,99,8,22] for i in range(len(dataset)-1,0,-1): print("-------",dataset[0:i+1],len(dataset),i) #for index in range(int(len(dataset)/2),0,-1): for index in range(int((i+1)/2),0,-1): print(index) p_index = index l_child_index = p_index *2 - 1 r_child_index = p_index *2 print("l index",l_child_index,'r index',r_child_index) p_node = dataset[p_index-1] left_child = dataset[l_child_index] if p_node < left_child: # switch p_node with left child dataset[p_index - 1], dataset[l_child_index] = left_child, p_node # redefine p_node after the switch ,need call this val below p_node = dataset[p_index - 1] if r_child_index < len(dataset[0:i+1]): #avoid right out of list index range #if r_child_index < len(dataset[0:i]): #avoid right out of list index range #print(left_child) right_child = dataset[r_child_index] print(p_index,p_node,left_child,right_child) # if p_node < left_child: #switch p_node with left child # dataset[p_index - 1] , dataset[l_child_index] = left_child,p_node # # redefine p_node after the switch ,need call this val below # p_node = dataset[p_index - 1] # if p_node < right_child: #swith p_node with right child dataset[p_index - 1] , dataset[r_child_index] = right_child,p_node # redefine p_node after the switch ,need call this val below p_node = dataset[p_index - 1] else: print("p node [%s] has no right child" % p_node) #最后这个列表的第一值就是最大堆的值,把这个最大值放到列表最后一个, 把神剩余的列表再调整为最大堆 print("switch i index", i, dataset[0], dataset[i] ) print("before switch",dataset[0:i+1]) dataset[0],dataset[i] = dataset[i],dataset[0] print(dataset)

低调大师中文资讯倾力打造互联网数据资讯、行业资源、电子商务、移动互联网、网络营销平台。
持续更新报道IT业界、互联网、市场资讯、驱动更新,是最及时权威的产业资讯及硬件资讯报道平台。
转载内容版权归作者及来源网站所有,本站原创内容转载请注明来源。
- 上一篇
python希尔排序
希尔排序介绍 希尔排序(Shell Sort)是插入排序的一种。也称缩小增量排序,是直接插入排序算法的一种更高效的改进版本,该方法的基本思想是:先将整个待排元素序列分割成若干个子序列(由相隔某个“增量”的元素组成的)分别进行直接插入排序,然后依次缩减增量再进行排序,待整个序列中的元素基本有序(增量足够小)时,再对全体元素进行一次直接插入排序。因为直接插入排序在元素基本有序的情况下(接近最好情况),效率是很高的,因此希尔排序在时间效率比直接插入排序有较大提高。 首先要明确一下增量的取法: 第一次增量的取法为: d=count/2; 第二次增量的取法为: d=(count/2)/2; 最后一直到: d=1; 看上图观测的现象为: d=3时:将40跟50比,因50大,不交换。 将20跟30比,因30大,不交换。 将80跟60比,因60小,交换。 d=2时:将40跟60比,不交换,拿60跟30比交换,此时交换后的30又比前面的40小,又要将40和30交换,如上图。 将20跟50比,不交换,继续将50跟80比,不交换。 d=1时:这时就是前面讲的插入排序了,不过此时的序列已经差不多有序了,所以给...
- 下一篇
过年回家,程序猿最怕的5件事
时间过得真快啊,一月接一月,一年又一年。程序猿工作繁忙,每天游离于代码之间,似乎已经忘记了时间的流淌。 话说又要回去过年了,作者是心有余悸的。已经习惯在大城市生活的一线码农,早已不能融入故乡那种风气的生活。但又要面对许多你需要面对的事情,比如以下几件。 一、借钱 笔者无时不刻接受到亲朋好友的借钱。这不还没回去过年,一亲戚就要借钱盖房,同时得知他买了辆车。车是刚需吗?不买车就有钱盖房,就不用麻烦别人,买车了还找别人借钱盖房!我很无语。 钱是好东西,谁都喜欢。对于借钱这事,借,或者不借,都让人头疼。不借,是因为自己并不宽裕,可又不能得到理解,增加猜忌。借了,自己就会拮据,守信用的又非常少,钱出去容易回来就难,讨钱也会使亲朋好友变世仇。我认为,不是生死困难的事,不要轻易找别人借钱。 image 二、相亲 相亲或许也是程序猿最怕的。程序猿闷骚、宅、内向、腼腆的性格,使他们不容易打开社交圈,更不擅长与异性打交道,成为多年钻石单身也并不觉得奇怪。 有一朋友回家过年,还没到家,就被转送到女方家,一脸蒙逼的情况下才知道是相亲。更可怕的是,接连相亲,一个相不中,不断有媒婆来与你牵线搭桥,相亲也是饭桌上或...
相关文章
文章评论
共有0条评论来说两句吧...
文章二维码
点击排行
推荐阅读
最新文章
- Eclipse初始化配置,告别卡顿、闪退、编译时间过长
- MySQL8.0.19开启GTID主从同步CentOS8
- CentOS8,CentOS7,CentOS6编译安装Redis5.0.7
- CentOS7编译安装Cmake3.16.3,解决mysql等软件编译问题
- Springboot2将连接池hikari替换为druid,体验最强大的数据库连接池
- 设置Eclipse缩进为4个空格,增强代码规范
- CentOS7,CentOS8安装Elasticsearch6.8.6
- CentOS8编译安装MySQL8.0.19
- SpringBoot2整合MyBatis,连接MySql数据库做增删改查操作
- CentOS6,CentOS7官方镜像安装Oracle11G