Kepler 参数化查询优化方法
写在前面 本文主要介绍了发布于 2023 年 SIGMOD 的论文《Kepler: Robust Learning for Faster Parametric Query Optimization》,该文章针对参数化查询,将参数化查询优化与查询优化结合,旨在减少查询规划时间的同时提高查询性能。 为此,作者提出了一种端到端的、基于深度学习的参数化查询优化方法,名为 Kepler (K-plan Evolution for Parametric Query Optimization: Learned, Empirical, Robust)。 数化查询是指具有相同 SQL 结构,只在绑定的参数值上不同的一类查询。举个例子,考虑以下查询结构: 该查询结构可以看作一个参数化查询的模板,”?”处代表着不同的参数值。用户执行的 SQL 语句都具有该查询结构,只是实际的参数值可能不同,这就是一个参数化查询。这样的参数化查询在现代数据库中的使用十分频繁。由于其不断重复执行同一查询模板,为提升它的查询性能带来了机遇。 参数化查询优化 (PQO) 用于优化上述参数化查询的性能,目标是尽可能地减少查询规划时间...
