浅述边缘计算场景下的云边端协同融合架构的应用场景示例
云计算正在向一种更加全局化的分布式节点组合形态进阶,而边缘计算是云计算能力向边缘侧分布式拓展的新触角。随着城市建设进程加快,海量设备产生的数据,若上传到云端进行处理,会对云端造成巨大压力。如果利用边缘计算来让云端的能力下沉,则可以很好地解决海量数据的处理问题,让云端的数据处理压力得到有效地分摊。
对于边缘AI总体来说,核心诉求是高性能、低成本、高灵活性。以TSINGSEE青犀边缘计算AI智能分析网关为例,它的主要特点如下:
1)算力:支持高达17.6T的INT8峰值算力或2.2T的FP32高精度算力;
2)性能:支持高达16路1080P高清视频全流程处理,支持32路全高清视频硬件解码与2路编码;
3)算法:支持人/车/非/物识别、视频结构化、轨迹行为分析等多种算法移植;
4)场景:支持智慧园区/安防/工控/商业等多领域多场景灵活部署;
5)接口:支持USB、HDMI、RS-485、RS-232、SATA、自定义I/O等多种接口;
6)移植:支持Caffe/TensorFlow/PyTorch/MXNet/Paddle Lite等主流深度学习框架;
7)云边协同:支持Docker容器化、Kubernetes扩展管理,支持云端模型更新与设备管理、升级。
经过处理的数据从边缘节点汇聚到中心云,云计算做大数据分析挖掘、数据共享,同时进行算法模型的训练和升级,升级后的算法推送到边缘,使边缘设备更新和升级,完成自主学习闭环。TSINGSEE青犀边缘计算AI智能分析网关支持一键部署,及时生效,设备内置了二十多种AI算法,包括人车非结构化分析、人脸识别,行为分析、周界警戒、消防警戒等,能对视频中的人、车、物、行为等进行追踪与识别、上报识别结果,可应用在能源矿场、工厂、工地、危化行业、消防、电力、工业园区、校园安全等领域与场景中。
在场景应用中,通过将现场监控设备采集的数据经AI边缘智能分析后,分析结果统一汇聚至EasyCVR视频融合平台,并进行数据分析与统计的可视化结果展示,快速构建基于AI视频识别技术的大数据智能分析与安全风险预警平台,并能对常见的各类安全规范及行为进行监测与管控,如穿戴规范、在岗状态、危险行为、周界异常、作业区域环境异常(明火、烟雾)等,满足基于视频服务的数据感知、远程监控、智能识别、智能分析、智能告警等需求。
边缘智能有望尽可能地将深度学习计算从云端推向边缘,这使得开发各种分布式、低延迟和可靠的智能服务成为可能。与此同时,站在全局角度思考,中心云资源的分配、算力协同与调度等,也需要云边协同的模式进行部署与展开。
EasyCVR系统与AI智能分析网关在项目的部署中,则采取了这种云边端协同的模式,将云计算的能力下沉到边缘侧、设备侧,并通过中心进行统一交付、运维、管控,并且这种模式已经运用在了智慧城市、智慧交通、智慧工厂、智慧工地、智慧校园、智慧社区、智慧景区等领域中。
1)智慧安防:用于社区、楼宇、企业园区等场所的安防监管场景,如:人脸门禁、人员进出、车辆出入、周界防范、危险区域闯入、可疑徘徊等,对周界形成安全布控,弥补传统人工监控模式的效率低下等问题,可提高相关场所的安全管理与风险防范水平。
2)智慧安监:用于企业安全生产监管场景,如:工地、煤矿、危化品、加油站、烟花爆竹、电力等行业,有助于降低企业在生产过程中存在的安全隐患,保障企业安全生产。
3)智慧景区:用于景区、公园等场景,可实时统计监控范围内的游客流量、预警人群拥挤事件、防止危险区域有人员闯入、识别烟火、车辆违停等,可有效消除治安隐患,配合实现人流统计和安防管控。
4)城市管理:基于街面秩序检测、市容环境检测、突发事件检测、施工管理等AI算法模型,能及时发现城市监管中的各种违法违规问题,并能立即触发告警,让执法人员可以及时干预处理,实现城市管理的可感、可视、可管、可控,提升执法人员的工作效率。

低调大师中文资讯倾力打造互联网数据资讯、行业资源、电子商务、移动互联网、网络营销平台。
持续更新报道IT业界、互联网、市场资讯、驱动更新,是最及时权威的产业资讯及硬件资讯报道平台。
转载内容版权归作者及来源网站所有,本站原创内容转载请注明来源。
- 上一篇
为什么要强调AI技术与边缘智能结合?应用场景有哪些?
随着城市规模扩大所带来的公共安全问题越来越受到重视。传统城市安全视频监控系统前端摄像机内置计算能力较低,以边缘计算和万物互联技术为基础的新型视频监控系统是未来发展趋势。在移动计算和物联网进步的推动下,数十亿移动和物联网设备连接到互联网,在网络边缘生成数以亿计的数据字节。计算负载高、带宽需求大、延迟要求严等特点使得实时视频流分析难以通过传统的云计算范式进行部署。 为什么需要边缘AI智能? 针对海量视频数据,云计算中心服务器的计算能力有限,因此,边缘计算AI智能技术逐渐兴起,将计算任务从云端下沉到位于网络边缘的终端设备和边缘服务器上,能够有效解决上述问题。 1)构建基于边缘计算的视频预处理技术,去除视频图像冗余信息,使得部分或全部视频分析迁移到边缘处,由此降低对云中心的计算、存储和网络带宽需求,提高视频图像分析的效率。 2)构建基于行为感知的边缘预处理功能,实现视频数据弹性存储。根据行为特征决策功能,实时调整视频数据,既减少无效视频的存储,降低存储空间,又最大化存储“事中”证据类视频数据,提高视频数据存储空间利用率。 当前存量的云计算、物联网技术通过与边缘计算结合,将显著提升对于以上高要求...
- 下一篇
重磅更新:PolarDB-X V2.3 集中式和分布式一体化开源发布
架构简介 PolarDB-X 采用 Shared-nothing 与存储分离计算架构进行设计,系统由5个核心组件组成。 计算节点(CN, Compute Node) 计算节点是系统的入口,采用无状态设计,包括 SQL 解析器、优化器、执行器等模块。负责数据分布式路由、计算及动态调度,负责分布式事务 2PC 协调、全局二级索引维护等,同时提供 SQL 限流、三权分立等企业级特性。 存储节点(DN, Data Node) 存储节点负责数据的持久化,基于多数派 Paxos 协议提供数据高可靠、强一致保障,同时通过 MVCC 维护分布式事务可见性。 元数据服务(GMS, Global Meta Service) 元数据服务负责维护全局强一致的 Table/Schema, Statistics 等系统 Meta 信息,维护账号、权限等安全信息,同时提供全局授时服务(即 TSO)。 日志节点(CDC, Change Data Capture) 日志节点提供完全兼容 MySQL Binlog 格式和协议的增量订阅能力,提供兼容 MySQL Replication 协议的主从复制能力。 列存节点 (C...
相关文章
文章评论
共有0条评论来说两句吧...