别再纠结线程池池大小、线程数量了,哪有什么固定公式 | 京东云技术团队
可能很多人都看到过一个线程数设置的理论:
-
CPU 密集型的程序 - 核心数 + 1
-
I/O 密集型的程序 - 核心数 * 2
不会吧,不会吧,真的有人按照这个理论规划线程数?
线程数和CPU利用率的小测试
抛开一些操作系统,计算机原理不谈,说一个基本的理论(不用纠结是否严谨,只为好理解):一个CPU核心,单位时间内只能执行一个线程的指令
那么理论上,我一个线程只需要不停的执行指令,就可以跑满一个核心的利用率。
来写个死循环空跑的例子验证一下:
测试环境:AMD Ryzen 5 3600, 6 - Core, 12 - Threads
public class CPUUtilizationTest { public static void main(String[] args) { //死循环,什么都不做 while (true){ } } }
运行这个例子后,来看看现在CPU的利用率:
从图上可以看到,我的3号核心利用率已经被跑满了
那基于上面的理论,我多开几个线程试试呢?
public class CPUUtilizationTest { public static void main(String[] args) { for (int j = 0; j < 6; j++) { new Thread(new Runnable() { @Override public void run() { while (true){ } } }).start(); } } }
此时再看CPU利用率,1/2/5/7/9/11 几个核心的利用率已经被跑满:
那如果开12个线程呢,是不是会把所有核心的利用率都跑满?答案一定是会的
如果此时我把上面例子的线程数继续增加到24个线程,会出现什么结果呢?
从上图可以看到,CPU利用率和上一步一样,还是所有核心100%,不过此时负载已经从11.x增加到了22.x(load average解释参考https://scoutapm.com/blog/understanding-load-averages),说明此时CPU更繁忙,线程的任务无法及时执行。
现代CPU基本都是多核心的,比如我这里测试用的AMD 3600,6核心12线程(超线程),我们可以简单的认为它就是12核心CPU。那么我这个CPU就可以同时做12件事,互不打扰。
如果要执行的线程大于核心数,那么就需要通过操作系统的调度了。操作系统给每个线程分配CPU时间片资源,然后不停的切换,从而实现“并行”执行的效果。
但是这样真的更快吗?从上面的例子可以看出,一个线程就可以把一个核心的利用率跑满。如果每个线程都很“霸道”,不停的执行指令,不给CPU空闲的时间,并且同时执行的线程数大于CPU的核心数,就会导致操作系统更频繁的执行切换线程执行,以确保每个线程都可以得到执行。
不过切换是有代价的,每次切换会伴随着寄存器数据更新,内存页表更新等操作。虽然一次切换的代价和I/O操作比起来微不足道,但如果线程过多,线程切换的过于频繁,甚至在单位时间内切换的耗时已经大于程序执行的时间,就会导致CPU资源过多的浪费在上下文切换上,而不是在执行程序,得不偿失。
上面死循环空跑的例子,有点过于极端了,正常情况下不太可能有这种程序。
大多程序在运行时都会有一些 I/O操作,可能是读写文件,网络收发报文等,这些 I/O 操作在进行时时需要等待反馈的。比如网络读写时,需要等待报文发送或者接收到,在这个等待过程中,线程是等待状态,CPU没有工作。此时操作系统就会调度CPU去执行其他线程的指令,这样就完美利用了CPU这段空闲期,提高了CPU的利用率。
上面的例子中,程序不停的循环什么都不做,CPU要不停的执行指令,几乎没有啥空闲的时间。如果插入一段I/O操作呢,I/O 操作期间 CPU是空闲状态,CPU的利用率会怎么样呢?先看看单线程下的结果:
public class CPUUtilizationTest { public static void main(String[] args) throws InterruptedException { for (int n = 0; n < 1; n++) { new Thread(new Runnable() { @Override public void run() { while (true){ //每次空循环 1亿 次后,sleep 50ms,模拟 I/O等待、切换 for (int i = 0; i < 100_000_000l; i++) { } try { Thread.sleep(50); } catch (InterruptedException e) { e.printStackTrace(); } } } }).start(); } } }
哇,唯一有利用率的9号核心,利用率也才50%,和前面没有sleep的100%相比,已经低了一半了。现在把线程数调整到12个看看:
单个核心的利用率60左右,和刚才的单线程结果差距不大,还没有把CPU利用率跑满,现在将线程数增加到18:
此时单核心利用率,已经接近100%了。由此可见,当线程中有 I/O 等操作不占用CPU资源时,操作系统可以调度CPU可以同时执行更多的线程。
现在将I/O事件的频率调高看看呢,把循环次数减到一半,50_000_000,同样是18个线程:
此时每个核心的利用率,大概只有70%左右了。
线程数和CPU利用率的小总结
上面的例子,只是辅助,为了更好的理解线程数/程序行为/CPU状态的关系,来简单总结一下:
-
一个极端的线程(不停执行“计算”型操作时),就可以把单个核心的利用率跑满,多核心CPU最多只能同时执行等于核心数的“极端”线程数
-
如果每个线程都这么“极端”,且同时执行的线程数超过核心数,会导致不必要的切换,造成负载过高,只会让执行更慢
-
I/O 等暂停类操作时,CPU处于空闲状态,操作系统调度CPU执行其他线程,可以提高CPU利用率,同时执行更多的线程
-
I/O 事件的频率频率越高,或者等待/暂停时间越长,CPU的空闲时间也就更长,利用率越低,操作系统可以调度CPU执行更多的线程
线程数规划的公式
前面的铺垫,都是为了帮助理解,现在来看看书本上的定义。《Java 并发编程实战》介绍了一个线程数计算的公式:
如果希望程序跑到CPU的目标利用率,需要的线程数公式为:
公式很清晰,现在来带入上面的例子试试看:
如果我期望目标利用率为90%(多核90),那么需要的线程数为:
核心数12 * 利用率0.9 * (1 + 50(sleep时间)/50(循环50_000_000耗时)) ≈ 22
现在把线程数调到22,看看结果:
现在CPU利用率大概80+,和预期比较接近了,由于线程数过多,还有些上下文切换的开销,再加上测试用例不够严谨,所以实际利用率低一些也正常。
把公式变个形,还可以通过线程数来计算CPU利用率:
线程数22 / (核心数12 * (1 + 50(sleep时间)/50(循环50_000_000耗时))) ≈ 0.9
虽然公式很好,但在真实的程序中,一般很难获得准确的等待时间和计算时间,因为程序很复杂,不只是“计算”。一段代码中会有很多的内存读写,计算,I/O 等复合操作,精确的获取这两个指标很难,所以光靠公式计算线程数过于理想化。
真实程序中的线程数
那么在实际的程序中,或者说一些Java的业务系统中,线程数(线程池大小)规划多少合适呢?
先说结论:没有固定答案,先设定预期,比如我期望的CPU利用率在多少,负载在多少,GC频率多少之类的指标后,再通过测试不断的调整到一个合理的线程数
比如一个普通的,SpringBoot 为基础的业务系统,默认Tomcat容器+HikariCP连接池+G1回收器,如果此时项目中也需要一个业务场景的多线程(或者线程池)来异步/并行执行业务流程。
此时我按照上面的公式来规划线程数的话,误差一定会很大。因为此时这台主机上,已经有很多运行中的线程了,Tomcat有自己的线程池,HikariCP也有自己的后台线程,JVM也有一些编译的线程,连G1都有自己的后台线程。这些线程也是运行在当前进程、当前主机上的,也会占用CPU的资源。
所以受环境干扰下,单靠公式很难准确的规划线程数,一定要通过测试来验证。
流程一般是这样:
-
分析当前主机上,有没有其他进程干扰
-
分析当前JVM进程上,有没有其他运行中或可能运行的线程
-
设定目标
-
目标CPU利用率 - 我最高能容忍我的CPU飙到多少?
-
目标GC频率/暂停时间 - 多线程执行后,GC频率会增高,最大能容忍到什么频率,每次暂停时间多少?
-
执行效率 - 比如批处理时,我单位时间内要开多少线程才能及时处理完毕
-
……
-
-
梳理链路关键点,是否有卡脖子的点,因为如果线程数过多,链路上某些节点资源有限可能会导致大量的线程在等待资源(比如三方接口限流,连接池数量有限,中间件压力过大无法支撑等)
-
不断的增加/减少线程数来测试,按最高的要求去测试,最终获得一个“满足要求”的线程数**
而且而且而且!不同场景下的线程数理念也有所不同:
-
Tomcat中的maxThreads,在Blocking I/O和No-Blocking I/O下就不一样
-
Dubbo 默认还是单连接呢,也有I/O线程(池)和业务线程(池)的区分,I/O线程一般不是瓶颈,所以不必太多,但业务线程很容易称为瓶颈
-
Redis 6.0以后也是多线程了,不过它只是I/O 多线程,“业务”处理还是单线程
所以,不要纠结设置多少线程了。没有标准答案,一定要结合场景,带着目标,通过测试去找到一个最合适的线程数。
可能还有同学可能会有疑问:“我们系统也没啥压力,不需要那么合适的线程数,只是一个简单的异步场景,不影响系统其他功能就可以”
很正常,很多的内部业务系统,并不需要啥性能,稳定好用符合需求就可以了。那么我的推荐的线程数是:CPU核心数
附录
Java 获取CPU核心数
Runtime.getRuntime().availableProcessors()//获取逻辑核心数,如6核心12线程,那么返回的是12
Linux 获取CPU核心数
# 总核数 = 物理CPU个数 X 每颗物理CPU的核数 # 总逻辑CPU数 = 物理CPU个数 X 每颗物理CPU的核数 X 超线程数 # 查看物理CPU个数 cat /proc/cpuinfo| grep "physical id"| sort| uniq| wc -l # 查看每个物理CPU中core的个数(即核数) cat /proc/cpuinfo| grep "cpu cores"| uniq # 查看逻辑CPU的个数 cat /proc/cpuinfo| grep "processor"| wc -l
如果我的文章对您有帮助,请点赞/收藏/关注鼓励支持一下吧❤❤❤❤❤❤
作者:京东保险 蒋信
来源:京东云开发者社区 转载请注明来源

低调大师中文资讯倾力打造互联网数据资讯、行业资源、电子商务、移动互联网、网络营销平台。
持续更新报道IT业界、互联网、市场资讯、驱动更新,是最及时权威的产业资讯及硬件资讯报道平台。
转载内容版权归作者及来源网站所有,本站原创内容转载请注明来源。
- 上一篇
逻辑漏洞挖掘之XSS漏洞原理分析及实战演练 | 京东物流技术团队
一、前言 2月份的1.2亿条用户地址信息泄露再次给各大公司敲响了警钟,数据安全的重要性愈加凸显,这也更加坚定了我们推行安全测试常态化的决心。随着测试组安全测试常态化的推进,有更多的同事对逻辑漏洞产生了兴趣,本系列文章旨在揭秘逻辑漏洞的范围、原理及预防措施,逐步提升大家的安全意识。作为开篇第一章,本文选取了广为熟知的XSS逻辑漏洞进行介绍。 二、XSS漏洞介绍 1.XSS漏洞的定义 跨站脚本(Cross Site Script),为了不和层叠样式表(Cascading Style Sheets,CSS)的缩写混淆,故将跨站脚本缩写为XSS。跨站脚本(以下简称XSS)通常发生在客户端,攻击者在Web页面中插入恶意JavaScript代码(也包括VBScript和ActionScript代码等),用户浏览此页面时,会执行这些恶意代码,从而使用户受到攻击。 2.XSS主要攻击形式 存储型跨站脚本攻击 攻击者利用应用程序提供的添加、修改数据功能,将恶意数据存储到服务器中,当其他用户浏览展示该数据的页面时,浏览器会执行页面嵌入的恶意脚本,从而达到恶意攻击的目的,这种攻击是持久化的。 反射型跨站脚本...
- 下一篇
探析ElasticSearch Kibana在测试工作中的实践应用 | 京东物流技术团队
一. 为什么使用ES Kibana 离线数据测试中最重要的就是数据验证,一部分需要测试es存储数据的正确性,另一部分就需要验证接口从es取值逻辑的正确性。而为了验证es取值逻辑的正确性,就需要用到Kibana, 它能帮助测试同学更加快速高效的执行es数据的查询,大大提高测试效率。 二. 什么是ES和Kibana 我们平常所说的ELK指的就是Elasticsearch、Logstash和Kibana,这三个技术的组合是大数据领域中一个很巧妙的设计,是一种很典型的MVC思想,模型持久层,视图层和控制层。 Logstash担任控制层的角色,负责搜集和过滤数据。 Elasticsearch担任数据持久层的角色,负责储存数据,是一个实时的分布式存储、搜索、分析的引擎,适用于所有类型的数据,包括文本、数字、地理空间、结构化和非结构化数据,相较于Mysql来说更善于百万数据量的检索。 而我们这次讲的Kibana担任视图层角色,它是一个为Logstash和ElasticSearch提供的日志分析的Web接口。可使用它对日志进行高效的搜索、可视化、分析等各种操作,是一个开源的数据分析与可视化平台,与El...
相关文章
文章评论
共有0条评论来说两句吧...
文章二维码
点击排行
推荐阅读
最新文章
- Hadoop3单机部署,实现最简伪集群
- CentOS关闭SELinux安全模块
- Windows10,CentOS7,CentOS8安装MongoDB4.0.16
- Linux系统CentOS6、CentOS7手动修改IP地址
- CentOS7编译安装Gcc9.2.0,解决mysql等软件编译问题
- Jdk安装(Linux,MacOS,Windows),包含三大操作系统的最全安装
- SpringBoot2整合Redis,开启缓存,提高访问速度
- SpringBoot2整合MyBatis,连接MySql数据库做增删改查操作
- CentOS8,CentOS7,CentOS6编译安装Redis5.0.7
- MySQL8.0.19开启GTID主从同步CentOS8