千万级数据深分页查询SQL性能优化实践 | 京东云技术团队
一、系统介绍和问题描述
如何在Mysql中实现上亿数据的遍历查询?先来介绍一下系统主角:关注系统,主要是维护京东用户和业务对象之前的关注关系;并对外提供各种关系查询,比如查询用户的关注商品或店铺列表,查询用户是否关注了某个商品或店铺等。但是最近接到了一个新需求,要求提供查询关注对象的粉丝列表接口功能。该功能的难点就是关注对象的粉丝数量过多,不少店铺的粉丝数量都是千万级别,并且有些大V粉丝数量能够达到上亿级别。而这些粉丝列表数据目前全都存储在Mysql库中,然后通过业务对象ID进行分库分表,所有的粉丝列表数据分布在16个分片的256张表中。同时为了方便查询粉丝列表,同一个业务对象的所有粉丝都会路由到同一张表中,每个表的数据量都能够达到 2 亿+。
二、解决问题的思路和方法
数据库表结构示例如下:
CREATE TABLE follow_fans_[0-255] ( id bigint(11) NOT NULL AUTO_INCREMENT COMMENT '自增id', biz_content VARCHAR(50) DEFAULT NULL COMMENT '业务对象ID', source VARCHAR(50) DEFAULT NULL COMMENT '来源', pin VARCHAR(50) DEFAULT NULL COMMENT '用户pin', ext VARCHAR(5000) DEFAULT NULL COMMENT '扩展信息', status TINYINT(2) DEFAULT 1 COMMENT '状态,0是失效,1是正常', created_time DATETIME DEFAULT NULL COMMENT '创建时间', modified_time DATETIME DEFAULT NULL COMMENT '修改时间', PRIMARY KEY(id), UNIQUE INDEX uniq_biz_content_pin (biz_content, pin) ) ENGINE = InnoDB AUTO_INCREMENT = 1 DEFAULT CHARSET = utf8 COMMENT = '关注粉丝表';
Limit实现
由于同一个业务对象的所有粉丝都保存到一张数据库表中,对于分页查询列表接口,首先想到的就是用limit实现,对于粉丝数量很少的关注对象,查询接口性能还不错。但是随着关注对象的粉丝数量越来越多,接口查询性能就会越来越慢。后来经过接口压测,当业务对象粉丝列表数量达到几十万级别的时候,查询页码数量越大,查询耗时越多。limit深分页为什么会变慢?这就和sql的执行计划有关了,limit语句会先扫描offset+n行,然后再丢弃掉前offset行,返回后n行数据。也就是说limit 100000,10
,就会扫描100010行,而limit 0,10
,只扫描10行。查询 sql 示例如下:
select id,biz_content,pin FROM follow_fans_1 where biz_content = #{bizContent} order by id desc limit 10, 10;
- 方案优点:实现简单,支持跳页查询。
- 方案缺点:数据量变大时,随着查询页码的深入,查询性能越来越差。
标签记录法
Limit深分页问题的本质原因就是:偏移量(offset)越大,mysql就会扫描越多的行,然后再抛弃掉,这样就导致查询性能的下降。所以我们可以采用标签记录法,就是标记一下上次查询到哪一条了,下次再来查的时候,从该条开始往下扫描。具体做法方式是,查询粉丝列表中按照自增主键ID倒序查询,查询结果中返回主键ID,然后查询入参中增加maxId参数,该参数需要透传上一次请求粉丝列表中最后一条记录主键ID,第一次查询时可以为空,但是需要查询下一页时就必传。最后根据查询时返回的行数是否等于 10 来判断整个查询是否可以结束。优化后的查询sql参考如下:
select id,biz_content,pin FROM follow_fans_1 where biz_content = #{bizContent} and id < #{lastId} order by id desc limit 10;
- 方案优点:避免了数据量变大时,页码查询深入的性能下降问题;经过接口压测,千万级数据量时,前 N-1页查询耗时可以控制在几十毫秒内。
- 方案缺点:只能支持按照页码顺序查询,不支持跳页,而且仅能保证前 N-1 页的查询性能;如果最后一页的表中行数量不满 10 条时,引擎不知道何时终止查询,只能遍历全表,所以当表中数据量很大时,还是会出现超时情况。
区间限制法
标签记录法最后一页查询超时就是因为不知道何时终止查询,所以我们可以提供一个区间限制范围来告诉引擎查询到此结束。
查询sql再次优化后参考如下:
select id,biz_content,pin FROM follow_fans_1 where biz_content = #{bizContent} and id < #{lastId} and id >={minId} order by id desc limit 10;
由于查询时需要带上 minId 参数,所以在执行查询粉丝列表之前,我们就需要先把 minId 查询出来,查询 sql 参考如下:
select min(id) from follow_fans_1 where biz_content = #{bizContent}
由于表中数据量太大,每个表中总数据量都是上亿级别,导致第一步查询 minId就直接超时了,根本没有机会去执行第二步。但是考虑到上一个查询方案只有最后一页才会查询超时,前N-1页查询根本用不到 minId 作为区间限制。所以当表中数据量很大时,通常从第一页到最后一页查询之间会存在一定的时间差。我们就可以正好去利用这个时间差去异步查询minId,然后将查询出来的minId存储到缓存中,考虑到这个 minId 可能会被删除,可以设置一定的过期时间。最后优化后的查询流程如下:
- 调用查询粉丝列表方法时首先查询缓存minId;
- 如果缓存minId 为空,则创建异步任务去执行select min(id) 查询表中的 minId,然后回写缓存,该异步任务执行时间可能会很长,可以单独设置超时时间。
- 如果缓存minId不为空,则在查询sql中拼接查询条件id >={minId},从而保证查询最后一页时不会超时。
但是在上述方案中,如果表中的数据量达到上亿级别时,第二步的异步获取minId任务还是会存在超时的风险,从而导致查询最后一页粉丝列表出现超时。所以我们又引入了离线数据计算任务,通过在大数据平台离线计算获取每个biz_content下的minId,然后将计算结果minId推送到缓存中。为了保证minId能够及时更新,我们可以自由设置该离线任务的执行周期,比如每周执行一次。通过大数据平台的离线计算minId,从而大大减少了在查询粉丝列表时执行 select min(id)的业务数据库压力。只有当缓存没有命中的时候才去执行 select min(id),通常这些缓存没有命中的 minId 也都是一些被离线任务遗漏的少量数据,不会影响接口的整体查询性能。
- 方案优点:避免了数据量变大时,页码查询深入的性能下降问题;经过接口压测,千万级数据量时,从第一页到最后一页都控制在几十毫秒内。
- 方案缺点:只能支持按照页码顺序和主键ID倒序查询,不支持跳页查询,并且还需要依赖大数据平台离线计算和额外的缓存来存储 minId。
三、对SQL优化治理的思考
通过对以上三种方案的探索实践,发现每一种方案都有自己的优缺点和它的适用场景,我们不能脱离实际业务场景去谈方案的好坏。所以我们要结合实际的业务环境以及表中数据量的大小去综合考虑、权衡利弊,然后找到更适合的技术方案。以下是总结的几条SQL优化建议:
查询条件一定要有索引
索引主要分为两大类,聚簇索引和非聚簇索引,可以通过 explain 查看 sql 执行计划判断查询是否使用了索引。
聚簇索引 (clustered index):聚簇索引的叶子节点存储行记录,InnoDB必须要有且只有一个聚簇索引:
- 如果表定义了主键,则主键索引就是聚簇索引;
- 如果没有定义主键,则第一个非空的唯一索引列是聚簇索引;
- 如果没有唯一索引,则创建一个隐藏的row-id列作为聚簇索引。主键索引查询非常快,可以直接定位行记录。
非聚簇索引 (secondary index):InnoDB非聚簇索引的叶子节点存储的是行记录的主键值,而MyISAM叶子节点存储的是行指针。 通常情况下,需要先遍历非聚簇索引获得聚簇索引的主键ID,然后在遍历聚簇索引获取对应行记录。
正确使用索引,防止索引失效
可以参考以下几点索引原则:
- 最左前缀匹配原则,mysql会一直向右匹配直到遇到范围查询(>、<、between、like)就停止匹配,比如 a=1 and b=2 and c>3 and d=4 ,如果建立了(a,b,c,d)顺序的索引,d是用不到索引的,如果建立(a,b,d,c)的索引则都可以用到,a、b、d的顺序可以任意调整。
- =和in可以乱序,比如 a=1 and b=2 and c=3 建立(a,b,c)索引可以任意顺序,mysql的查询优化器会帮助优化成索引可以识别的形式。
- 尽量选择区分度高德列作为索引,区分度公式count(distinct col)/count(*),表示字段不重复的比例。
- 索引列不能使用函数或参与计算,不能进行类型转换,否则索引会失效。
- 尽量扩展索引,不要新建索引。
减少查询字段,避免回表查询
回表查询就是先定位主键值,在根据主键值定位行记录,需要扫描两遍索引。 解决方案:只需要在一颗索引树上能够获取SQL所需要的所有列数据,则无需回表查询,速度更快。可以将要查询的字段,建立到联合索引里去,这就是索引覆盖。查询sql在进行explain解析时,Extra字段为Using Index时,则触发索引覆盖。没有触发索引覆盖,发生了回表查询时,Extra字段为Using Index condition。
作者:京东零售 曹志飞
来源:京东云开发者社区 转载请注明来源

低调大师中文资讯倾力打造互联网数据资讯、行业资源、电子商务、移动互联网、网络营销平台。
持续更新报道IT业界、互联网、市场资讯、驱动更新,是最及时权威的产业资讯及硬件资讯报道平台。
转载内容版权归作者及来源网站所有,本站原创内容转载请注明来源。
- 上一篇
库存预占架构升级方案设计-交易库存中心 | 京东物流技术团队
背景介绍 伴随物流行业的迅猛发展,一体化供应链模式的落地,对系统吞吐、系统稳定发出巨大挑战,库存作为供应链的重中之重表现更为明显。近三年数据可以看出: 接入商家同比增长37.64%、货品种类同比增长53.66% 货品数量同比增长46.43%、仓库数量同比增长18.87% 通过分析过往大促流量,分钟级流量增长率为75%,大促仓内反馈三方订单下传不及时,库存预占吞吐量和性能是导致订单积压因素之一。目前库存使用mysql数据库作为接单预占的扛量手段,随着一体化供应链建设以及重点KA商家不断接入,现有库存架构在业务支撑上存在风险和缺陷。 此外未来3到5年业务增长、流量增长预计增长5-10倍。为避免系统性能和技术架构缺陷导致业务损失,轻量级库存架构势在必行。 // 名词解释: 库存预占:是指消费者拍下商品订单后,库存先为该订单短暂预留,预留的库存即为预占库存。 架构原则 架构:是⾯向问题,解决问题的手段。 库存系统的问题: 非功能性:1.高并发 2.系统稳定性(容灾) 3.数据一致性 功能性: 1.业务复杂 2.数据一致性 系统设计 设计思路 当前库存系统瓶颈在哪里?:抗写流量,数据库成为瓶颈点...
- 下一篇
探索GreatADM:图形化部署MGR的全新体验
摘要: 在DBA的日常工作中,快速部署数据库高可用架构,且标准化地入网部署数据库是一项重要的基础任务。本文将介绍常见的部署MGR的方式,并重点介绍万里数据库的GreatADM数据库管理平台进行图形化、可视化、标准化的部署过程,以提高交付效率和质量,给DBA提供一种全新的体验。(本文阅读大约需要4-6分钟) 引言 常见的数据库入网交付的方式和各自优缺点 方式一:手动部署 这是最基本的部署方式,需要手动在每个节点上安装、配置cnf和管理各节点,命令交互太多。虽然借助社区版的 MySQL Shell 操作相对简单,但对于大规模部署,手动操作可能耗费大量时间和人力,并且容易出现配置错误和一致性问题。 方式二:批量管理工具 使用配置管理工具(如Ansible、Puppet、Chef等)可以实现自动化的数据库安装部署,来解决批量交付时重复的劳动。通过编写配置文件和定义任务,配置管理工具可以自动执行安装、配置和启动MGR的步骤。这种方式可以提高部署效率并确保一致性,但对于初学者来说,配置管理工具的学习和配置可能需要一定的时间和学习成本。 方式三:GreatADM数据库管理平台 也是今天要介绍的主角。...
相关文章
文章评论
共有0条评论来说两句吧...
文章二维码
点击排行
推荐阅读
最新文章
- Windows10,CentOS7,CentOS8安装Nodejs环境
- CentOS7,8上快速安装Gitea,搭建Git服务器
- SpringBoot2初体验,简单认识spring boot2并且搭建基础工程
- SpringBoot2全家桶,快速入门学习开发网站教程
- Docker使用Oracle官方镜像安装(12C,18C,19C)
- SpringBoot2整合Redis,开启缓存,提高访问速度
- SpringBoot2编写第一个Controller,响应你的http请求并返回结果
- SpringBoot2更换Tomcat为Jetty,小型站点的福音
- CentOS8,CentOS7,CentOS6编译安装Redis5.0.7
- Jdk安装(Linux,MacOS,Windows),包含三大操作系统的最全安装