@Lazy 注解为啥就能破解死循环?
以下内容基于 Spring6.0.4。
上篇文章松哥和大家聊了在 Spring 中并非所有的循环依赖都可以被解决,有一些循环依赖默认情况下 Spring 也是完全无法解决的。不熟悉的小伙伴可以先看看上篇文章。
以上篇文章第一小节的案例为例,在构造方法中互相注入对方的 Bean,此时完全就是一个死循环呀,对于这种死循环,难道真的有办法解决?
Spring 里边提供了办法来解决,但是似乎又没有解决,为什么这么说,看完本文你就明白了。
1. @Lazy
如本文题目所示,上篇文章涉及到的三种无法自动解决的循环依赖,都可以通过添加 @Lazy 注解来解决。
如果是构造器注入,如下:
@Service public class AService { BService bService; @Lazy public AService(BService bService) { this.bService = bService; } public BService getbService() { return bService; } } @Service public class BService { AService aService; @Lazy public BService(AService aService) { this.aService = aService; } public AService getaService() { return aService; } }
@Lazy 注解可以添加在 AService 或者 BService 的构造方法上,也可以都添加上。
添加上之后,我们再去启动项目,就不会报错了。这样看起来问题解决了,但是其实还是差点意思,小伙伴们看一下我的启动代码:
ClassPathXmlApplicationContext ctx = new ClassPathXmlApplicationContext("aop.xml"); AService aService = ctx.getBean(AService.class); BService bService = ctx.getBean(BService.class); System.out.println("aService.getClass() = " + aService.getClass()); System.out.println("bService.getClass() = " + bService.getClass()); System.out.println("aService.getbService().getClass() = " + aService.getbService().getClass()); System.out.println("bService.getaService().getClass() = " + bService.getaService().getClass());
最终打印结果如下:
小伙伴们看到,我们从 AService 和 BService 中获取到的 Bean 都是正常的未被代理的对象,事实上我们的原始代码确实也没有需要代理的地方。但是,AService 中的 BService 以及 BService 中的 AService 却都是代理对象,按理说 AService 中的 BService 应该和我们从 Spring 容器中获取到的 BService 一致,BService 中的 AService 也应该和 Spring 容器中获取到的 AService 一致,但实际上,两者却并不相同。
不过这样也好懂了,为什么 Spring 能把一个死结给解开,就是因为 AService 和 BService 各自注入的 Bean 都不是原始的 Bean,都是一个代理的 Bean,AService 中注入的 BService 是一个代理对象,同理,BService 中注入的 AService 也是一个代理对象。
这也是为什么我一开始说这个问题 Spring 解决了又没解决。
其实,这就是 @Lazy 这个注解的工作原理,看名字,加了该注解的对象会被延迟加载,实际上被该注解标记的对象,会自动生成一个代理对象。
上篇文章中提到的另外两个问题,也可以通过 @Lazy 注解来解决,代码如下:
@Service @Scope("prototype") public class AService { @Lazy @Autowired BService bService; } @Service @Scope("prototype") public class BService { @Lazy @Autowired AService aService; }
这里 @Lazy 只要一个其实就能解决问题,也可以两个都添加。
对于含有 @Async 注解的情况,也可以通过 @Lazy 注解来解决:
@Service public class AService { @Autowired @Lazy BService bService; @Async public void hello() { bService.hello(); } public BService getbService() { return bService; } } @Service public class BService { @Autowired AService aService; public void hello() { System.out.println("xxx"); } public AService getaService() { return aService; } }
如此,循环依赖可破!
总而言之一句话,@Lazy 注解是通过建立一个中间代理层,来破解循环依赖的。
2. 原理分析
接下来我们再来分析一下 @Lazy 注解处理的源码。
这块的源码分析我就不从头开始分析了,因为整个处理流程前面部分和之前文章 @Autowired 到底是怎么把变量注入进来的?所介绍的内容是一致的,不熟悉的小伙伴建议先阅读 @Autowired 到底是怎么把变量注入进来的?一文。我这里就借用该文的总结,带领小伙伴们稍微回顾一下属性注入的过程:
- 在创建 Bean 的时候,原始 Bean 创建出来之后,会调用 populateBean 方法进行 Bean 的属性填充。
- 接下来调用 postProcessAfterInstantiation 方法去判断是否需要执行后置处理器,如果不需要,就直接返回了。
- 调用 postProcessProperties 方法,去触发各种后置处理器的执行。
- 在第 3 步的方法中,调用 findAutowiringMetadata,这个方法又会进一步触发 buildAutorwiringMetadata 方法,去找到包含了 @Autowired、@Value 以及 @Inject 注解的属性或者方法,并将之封装为 InjectedElement 返回。
- 调用 InjectedElement#inject 方法进行属性注入。
- 接下来执行 resolvedCachedArgument 方法尝试从缓存中找到需要的 Bean 对象。
- 如果缓存中不存在,则调用 resolveFieldValue 方法去容器中找到 Bean。
- 最后调用 makeAccessible 和 set 方法完成属性的赋值。
在第 7 步中,调用 resolveFieldValue 方法去解析 Bean,@Lazy 注解的相关逻辑就是在这个方法中进行处理的(对应 @Autowired 到底是怎么把变量注入进来的?一文的 3.2 小节)。
resolveFieldValue 方法最终会执行到 resolveDependency 方法:
@Nullable public Object resolveDependency(DependencyDescriptor descriptor, @Nullable String requestingBeanName, @Nullable Set<string> autowiredBeanNames, @Nullable TypeConverter typeConverter) throws BeansException { descriptor.initParameterNameDiscovery(getParameterNameDiscoverer()); if (Optional.class == descriptor.getDependencyType()) { return createOptionalDependency(descriptor, requestingBeanName); } else if (ObjectFactory.class == descriptor.getDependencyType() || ObjectProvider.class == descriptor.getDependencyType()) { return new DependencyObjectProvider(descriptor, requestingBeanName); } else if (javaxInjectProviderClass == descriptor.getDependencyType()) { return new Jsr330Factory().createDependencyProvider(descriptor, requestingBeanName); } else { Object result = getAutowireCandidateResolver().getLazyResolutionProxyIfNecessary( descriptor, requestingBeanName); if (result == null) { result = doResolveDependency(descriptor, requestingBeanName, autowiredBeanNames, typeConverter); } return result; } }
在这个方法中,首先会判断注入的属性类型是 Optional、ObjectFactory 还是 JSR-330 中的注解,我们这里都不是,所以走最后一个分支。
在最后一个 else 中,首先调用 getAutowireCandidateResolver().getLazyResolutionProxyIfNecessary 方法看一下是否需要延迟加载 Bean 对象,@Lazy 注解就是在这里进行处理的。如果能够延迟加载,那么该方法的返回值就不为 null,就可以直接返回了,就不需要执行 doResolveDependency 方法了。
ContextAnnotationAutowireCandidateResolver#getLazyResolutionProxyIfNecessary:
@Override @Nullable public Object getLazyResolutionProxyIfNecessary(DependencyDescriptor descriptor, @Nullable String beanName) { return (isLazy(descriptor) ? buildLazyResolutionProxy(descriptor, beanName) : null); }
大家看一下,这个方法首先会调用 isLazy 去判断一下是否需要延迟加载,如果需要,则调用 buildLazyResolutionProxy 方法构建一个延迟加载的对象;如果不需要,则直接返回一个 null 即可。
protected boolean isLazy(DependencyDescriptor descriptor) { for (Annotation ann : descriptor.getAnnotations()) { Lazy lazy = AnnotationUtils.getAnnotation(ann, Lazy.class); if (lazy != null && lazy.value()) { return true; } } MethodParameter methodParam = descriptor.getMethodParameter(); if (methodParam != null) { Method method = methodParam.getMethod(); if (method == null || void.class == method.getReturnType()) { Lazy lazy = AnnotationUtils.getAnnotation(methodParam.getAnnotatedElement(), Lazy.class); if (lazy != null && lazy.value()) { return true; } } } return false; }
这个判断方法主要是检查当前类中各种参数上是否含有 @Lazy 注解、方法、属性以及类名上是否含有 @Lazy 注解,如果有,则返回 true,否则返回 false。
再来看 buildLazyResolutionProxy 方法:
private Object buildLazyResolutionProxy( final DependencyDescriptor descriptor, final @Nullable String beanName, boolean classOnly) { BeanFactory beanFactory = getBeanFactory(); final DefaultListableBeanFactory dlbf = (DefaultListableBeanFactory) beanFactory; TargetSource ts = new TargetSource() { @Override public Class<!--?--> getTargetClass() { return descriptor.getDependencyType(); } @Override public boolean isStatic() { return false; } @Override public Object getTarget() { Set<string> autowiredBeanNames = (beanName != null ? new LinkedHashSet<>(1) : null); Object target = dlbf.doResolveDependency(descriptor, beanName, autowiredBeanNames, null); if (target == null) { Class<!--?--> type = getTargetClass(); if (Map.class == type) { return Collections.emptyMap(); } else if (List.class == type) { return Collections.emptyList(); } else if (Set.class == type || Collection.class == type) { return Collections.emptySet(); } throw new NoSuchBeanDefinitionException(descriptor.getResolvableType(), "Optional dependency not present for lazy injection point"); } if (autowiredBeanNames != null) { for (String autowiredBeanName : autowiredBeanNames) { if (dlbf.containsBean(autowiredBeanName)) { dlbf.registerDependentBean(autowiredBeanName, beanName); } } } return target; } @Override public void releaseTarget(Object target) { } }; ProxyFactory pf = new ProxyFactory(); pf.setTargetSource(ts); Class<!--?--> dependencyType = descriptor.getDependencyType(); if (dependencyType.isInterface()) { pf.addInterface(dependencyType); } ClassLoader classLoader = dlbf.getBeanClassLoader(); return (classOnly ? pf.getProxyClass(classLoader) : pf.getProxy(classLoader)); }
这个方法就是用来生成代理的对象的,这里构建了代理对象 TargetSource,在其 getTarget 方法中,会去执行 doResolveDependency 获取到被代理的对象(doResolveDependency 的获取逻辑可以参考 @Autowired 到底是怎么把变量注入进来的?一文),而 getTarget 方法只有在需要的时候才会被调用。所以,@Lazy 注解所做的事情,就是在给 Bean 中的各个属性注入值的时候,原本需要去 Spring 容器中找注入的对象,现在不找了,先给一个代理对象顶着,需要的时候再去 Spring 容器中查找。
后续的逻辑我就不再多说了,小伙伴们参考 @Autowired 到底是怎么把变量注入进来的?一文即可。
好啦,现在小伙伴们明白了 @Lazy 注解是如何解决 Spring 循环依赖了吧~虽然解决了,但是我们在日常开发中,要是能避免循环依赖还是要去避免~ </string></string>

低调大师中文资讯倾力打造互联网数据资讯、行业资源、电子商务、移动互联网、网络营销平台。
持续更新报道IT业界、互联网、市场资讯、驱动更新,是最及时权威的产业资讯及硬件资讯报道平台。
转载内容版权归作者及来源网站所有,本站原创内容转载请注明来源。
- 上一篇
浅析本地缓存技术-Guava Cache | 京东物流技术团队
1 引言 作为java开发工作者,相信大家对于guava这个工具包都不会太陌生,而对于本地缓存技术guava cache,大家在日常的工作开发中也都有所了解,接下来本文就从各个角度入手来对于Google提供的guava cache进行解析。 2 guava cache应用场景 本地缓存的数据读写都在一个进程内,相对与redis等分布式缓存,不需要网络传输的过程,访问速度很快,同时也受到JVM内存的制约,无法在数据量较多的场景下使用。 基于以上特点,guava cache的主要应用场景为以下几种: 对于访问速度有较大要求 存储的数据不经常变化 数据量不大,占用内存较小 需要访问整个集合 能够容忍数据不是实时的 在这里guava cache被用于储存参数配置,也符合以上的应用场景条件。 3 guava cache的使用方式 guava cache位于com.google.common.cache包下,核心的类有两个,一个是CacheBuilder,是用来构建缓存的,另一个是Cache,也就是缓存容器,用来存放缓存数据的。 要使用guava cache,首先要引入maven依赖: <d...
- 下一篇
Jedis 参数异常引发服务雪崩案例分析
作者:vivo 互联网服务器团队 - Wang Zhi Redis 作为互联网业务首选的远程缓存工具而被大面积使用,作为访问客户端的 Jedis 同样被大面积使用。本文主要分析 Redis3.x 版本集群模式发生主从切换场景下 Jedis 的参数设置不合理引发服务雪崩的过程。 一、背景介绍 Redis作为互联网业务首选的远程缓存工具而被被大家熟知和使用,在客户端方面涌现了Jedis、Redisson、Lettuce等,而Jedis属于其中的佼佼者。 目前笔者的项目采用Redis的3.x版本部署的集群模式(多节点且每个节点存在主从节点),使用Jedis作为Redis的访问客户端。 日前Redis集群中的某节点因为宿主物理机故障导致发生主从切换,在主从切换过程中触发了Jedis的重试机制进而引发了服务的雪崩。 本文旨在剖析Redis集群模式下节点发生主从切换进而引起服务雪崩的整个过程,希望能够帮助读者规避此类问题。 二、故障现场记录 消息堆积告警 【MQ-消息堆积告警】 告警时间:2022-11-29 23:50:21 检测规则: 消息堆积阈值:-》异常( >100000) 告警服务...
相关文章
文章评论
共有0条评论来说两句吧...
文章二维码
点击排行
推荐阅读
最新文章
- Docker快速安装Oracle11G,搭建oracle11g学习环境
- CentOS7安装Docker,走上虚拟化容器引擎之路
- Docker安装Oracle12C,快速搭建Oracle学习环境
- SpringBoot2全家桶,快速入门学习开发网站教程
- CentOS7设置SWAP分区,小内存服务器的救世主
- CentOS7,CentOS8安装Elasticsearch6.8.6
- Hadoop3单机部署,实现最简伪集群
- SpringBoot2更换Tomcat为Jetty,小型站点的福音
- Docker使用Oracle官方镜像安装(12C,18C,19C)
- SpringBoot2配置默认Tomcat设置,开启更多高级功能