CosineWarmup理论与代码实战
摘要:CosineWarmup是一种非常实用的训练策略,本次教程将带领大家实现该训练策略。教程将从理论和代码实战两个方面进行。
本文分享自华为云社区《CosineWarmup理论介绍与代码实战》,作者: 李长安。
CosineWarmup是一种非常实用的训练策略,本次教程将带领大家实现该训练策略。教程将从理论和代码实战两个方面进行。
在代码实战部分,模型采用LeNet-5模型进行测试,数据采用Cifar10数据集作为基准数据,
Warmup最早出现于这篇文章中:Accurate, Large Minibatch SGD:Training ImageNet in 1 Hour,warmup类似于跑步中的热身,在刚刚开始训练的时候进行热身,使得网络逐渐熟悉数据的分布,随着训练的进行学习率慢慢变大,到了指定的轮数,再使用初始学习率进行训练。
consine learning rate则来自于这篇文章Bag of Tricks for Image Classification with Convolutional Neural Networks,通过余弦函数对学习率进行调整
一般情况下,只在前五个Epoch中使用Warmup,并且通常情况下,把warm up和consine learning rate一起使用会达到更好的效果。
- Warmup
Warmup是在ResNet论文中提到的一种学习率预热的方法,它在训练开始的时候先选择使用一个较小的学习率,训练了一些epoches或者steps(比如4个epoches,10000steps),再修改为预先设置的学习来进行训练。由于刚开始训练时,模型的权重(weights)是随机初始化的,此时若选择一个较大的学习率,可能带来模型的不稳定(振荡),选择Warmup预热学习率的方式,可以使得开始训练的几个epoches或者一些steps内学习率较小,在预热的小学习率下,模型可以慢慢趋于稳定,等模型相对稳定后再选择预先设置的学习率进行训练,使得模型收敛速度变得更快,模型效果更佳。
- 余弦退火策略
当我们使用梯度下降算法来优化目标函数的时候,当越来越接近Loss值的全局最小值时,学习率应该变得更小来使得模型尽可能接近这一点,而余弦退火(Cosine annealing)可以通过余弦函数来降低学习率。余弦函数中随着x的增加余弦值首先缓慢下降,然后加速下降,再次缓慢下降。这种下降模式能和学习率配合,以一种十分有效的计算方式来产生很好的效果。
- 带Warmup的余弦退火策略
- 单个周期余弦退火衰减图形
以单个周期余弦退火衰减为例,介绍带Warmup的余弦退火策略,如下图所示,学习率首先缓慢升高,达到设定的最高值之后,通过余弦函数进行衰减调整。但是通常面对大数据集的时候,学习率可能会多次重复上述调整策略。
代码实现
from paddle.optimizer.lr import LinearWarmup from paddle.optimizer.lr import CosineAnnealingDecay class Cosine(CosineAnnealingDecay): """ Cosine learning rate decay lr = 0.05 * (math.cos(epoch * (math.pi / epochs)) + 1) Args: lr(float): initial learning rate step_each_epoch(int): steps each epoch epochs(int): total training epochs """ def __init__(self, lr, step_each_epoch, epochs, **kwargs): super(Cosine, self).__init__( learning_rate=lr, T_max=step_each_epoch * epochs, ) self.update_specified = False class CosineWarmup(LinearWarmup): """ Cosine learning rate decay with warmup [0, warmup_epoch): linear warmup [warmup_epoch, epochs): cosine decay Args: lr(float): initial learning rate step_each_epoch(int): steps each epoch epochs(int): total training epochs warmup_epoch(int): epoch num of warmup """ def __init__(self, lr, step_each_epoch, epochs, warmup_epoch=5, **kwargs): assert epochs > warmup_epoch, "total epoch({}) should be larger than warmup_epoch({}) in CosineWarmup.".format( epochs, warmup_epoch) warmup_step = warmup_epoch * step_each_epoch start_lr = 0.0 end_lr = lr lr_sch = Cosine(lr, step_each_epoch, epochs - warmup_epoch) super(CosineWarmup, self).__init__( learning_rate=lr_sch, warmup_steps=warmup_step, start_lr=start_lr, end_lr=end_lr) self.update_specified = False
实战
import paddle import paddle.nn.functional as F from paddle.vision.transforms import ToTensor from paddle import fluid import paddle.nn as nn print(paddle.__version__) 2.0.2 transform = ToTensor() cifar10_train = paddle.vision.datasets.Cifar10(mode='train', transform=transform) cifar10_test = paddle.vision.datasets.Cifar10(mode='test', transform=transform) # 构建训练集数据加载器 train_loader = paddle.io.DataLoader(cifar10_train, batch_size=64, shuffle=True) # 构建测试集数据加载器 test_loader = paddle.io.DataLoader(cifar10_test, batch_size=64, shuffle=True) Cache file /home/aistudio/.cache/paddle/dataset/cifar/cifar-10-python.tar.gz not found, downloading https://dataset.bj.bcebos.com/cifar/cifar-10-python.tar.gz Begin to download Download finished class MyNet(paddle.nn.Layer): def __init__(self, num_classes=10): super(MyNet, self).__init__() self.conv1 = paddle.nn.Conv2D(in_channels=3, out_channels=32, kernel_size=(3, 3), stride=1, padding = 1) # self.pool1 = paddle.nn.MaxPool2D(kernel_size=2, stride=2) self.conv2 = paddle.nn.Conv2D(in_channels=32, out_channels=64, kernel_size=(3,3), stride=2, padding = 0) # self.pool2 = paddle.nn.MaxPool2D(kernel_size=2, stride=2) self.conv3 = paddle.nn.Conv2D(in_channels=64, out_channels=64, kernel_size=(3,3), stride=2, padding = 0) # self.DropBlock = DropBlock(block_size=5, keep_prob=0.9, name='le') self.conv4 = paddle.nn.Conv2D(in_channels=64, out_channels=64, kernel_size=(3,3), stride=2, padding = 1) self.flatten = paddle.nn.Flatten() self.linear1 = paddle.nn.Linear(in_features=1024, out_features=64) self.linear2 = paddle.nn.Linear(in_features=64, out_features=num_classes) def forward(self, x): x = self.conv1(x) x = F.relu(x) # x = self.pool1(x) # print(x.shape) x = self.conv2(x) x = F.relu(x) # x = self.pool2(x) # print(x.shape) x = self.conv3(x) x = F.relu(x) # print(x.shape) # x = self.DropBlock(x) x = self.conv4(x) x = F.relu(x) # print(x.shape) x = self.flatten(x) x = self.linear1(x) x = F.relu(x) x = self.linear2(x) return x # 可视化模型 cnn2 = MyNet() model2 = paddle.Model(cnn2) model2.summary((64, 3, 32, 32)) --------------------------------------------------------------------------- Layer (type) Input Shape Output Shape Param # =========================================================================== Conv2D-1 [[64, 3, 32, 32]] [64, 32, 32, 32] 896 Conv2D-2 [[64, 32, 32, 32]] [64, 64, 15, 15] 18,496 Conv2D-3 [[64, 64, 15, 15]] [64, 64, 7, 7] 36,928 Conv2D-4 [[64, 64, 7, 7]] [64, 64, 4, 4] 36,928 Flatten-1 [[64, 64, 4, 4]] [64, 1024] 0 Linear-1 [[64, 1024]] [64, 64] 65,600 Linear-2 [[64, 64]] [64, 10] 650 =========================================================================== Total params: 159,498 Trainable params: 159,498 Non-trainable params: 0 --------------------------------------------------------------------------- Input size (MB): 0.75 Forward/backward pass size (MB): 25.60 Params size (MB): 0.61 Estimated Total Size (MB): 26.96 --------------------------------------------------------------------------- {'total_params': 159498, 'trainable_params': 159498} # 配置模型 from paddle.metric import Accuracy scheduler = CosineWarmup( lr=0.5, step_each_epoch=100, epochs=8, warmup_steps=20, start_lr=0, end_lr=0.5, verbose=True) optim = paddle.optimizer.SGD(learning_rate=scheduler, parameters=model2.parameters()) model2.prepare( optim, paddle.nn.CrossEntropyLoss(), Accuracy() ) # 模型训练与评估 model2.fit(train_loader, test_loader, epochs=10, verbose=1, ) The loss value printed in the log is the current step, and the metric is the average value of previous step. Epoch 1/3 /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddle/fluid/layers/utils.py:77: DeprecationWarning: Using or importing the ABCs from 'collections' instead of from 'collections.abc' is deprecated, and in 3.8 it will stop working return (isinstance(seq, collections.Sequence) and step 782/782 [==============================] - loss: 1.9828 - acc: 0.2280 - 106ms/step Eval begin... The loss value printed in the log is the current batch, and the metric is the average value of previous step. step 157/157 [==============================] - loss: 1.5398 - acc: 0.3646 - 35ms/step Eval samples: 10000 Epoch 2/3 step 782/782 [==============================] - loss: 1.7682 - acc: 0.3633 - 106ms/step Eval begin... The loss value printed in the log is the current batch, and the metric is the average value of previous step. step 157/157 [==============================] - loss: 1.7934 - acc: 0.3867 - 34ms/step Eval samples: 10000 Epoch 3/3 step 782/782 [==============================] - loss: 1.3394 - acc: 0.4226 - 105ms/step Eval begin... The loss value printed in the log is the current batch, and the metric is the average value of previous step. step 157/157 [==============================] - loss: 1.4539 - acc: 0.3438 - 35ms/step Eval samples: 10000
总结
之前一直提到这个CosineWarmup,但是一直没有实现过,这次也算是填了一个很早之前就挖的坑。同样,这里也不再设置对比实验,因为这个东西确实很管用。小模型和小数据集可能不太能够体现该训练策略的有效性。大家如果有兴趣可以使用更大的模型、更大的数据集测试一下。

低调大师中文资讯倾力打造互联网数据资讯、行业资源、电子商务、移动互联网、网络营销平台。
持续更新报道IT业界、互联网、市场资讯、驱动更新,是最及时权威的产业资讯及硬件资讯报道平台。
转载内容版权归作者及来源网站所有,本站原创内容转载请注明来源。
- 上一篇
伪装成 Chrome,Yandex 浏览器稳定性大幅提升
用户熟知的 Chrome、Edge、Brave、Vivaldi 和 Opera 都是基于 Chromium 的浏览器,在大家的认知中,这些浏览器的性能应该都差不太多,各个浏览器之间的主要差别可能就是界面和一些功能。只不过从最近的测试来看,情况并非如此。 Yandex Browser 是俄罗斯搜索巨头 Yandex 在 2012 年推出的浏览器,同样基于 Chromium,其特点是内置了卡巴斯基的反病毒技术来保护用户安全。近日 Yandex 浏览器性能团队的负责人 Maxim Smirnov 在官方博客的一篇名为「命名很重要」的文章中表示,他们仅仅就是将浏览器的可执行文件改名为 chrome.exe,就大幅降低了 GPU 进程的崩溃率和内存占用。 事情的起因是 Maxim Smirnov 的团队发现了一个触摸板滚动问题,该问题影响了 Yandex 浏览器,但在同一台设备上,Chrome 和 Edge 却没有受到影响。在技术层面,Yandex 浏览器使用的触摸板事件处理逻辑与 Chrome 这些浏览器完全相同,因此他们就想到重命名 Yandex 浏览器的可执行文件是否会改善浏览器的性能。最...
- 下一篇
喜马拉雅基于阿里云机器学习平台PAI-HybridBackend的深度学习模型训练优化实践
喜马拉雅作者:李超、陶云、许晨昱、胡文俊、张争光、赵云鹏、张玉静 喜马拉雅AI云借助阿里云提供的HybridBackend开源框架,实现了其推荐模型在 GPU 上的高效训练。 业务介绍 推荐场景是喜马拉雅app的重要应用之一,它广泛应用于热点、猜你喜欢、私人FM、首页信息流、发现页推荐、每日必听等模块。这些模块都依赖于喜马拉雅AI云,这是一套从数据、特征、模型到服务的全流程一站式算法工具平台。 推荐服务的一个核心诉求是能快速捕捉和反映用户不断变化的兴趣和当前热点,这就要求模型能在短时间内,以可控的成本完成对海量用户数据的训练。使用GPU等高性能硬件来加速模型训练已经成为CV, NLP等领域的行业标准;在使用稀疏训练数据的推荐场景下,国内外的各大厂商也在积极转向使用高性能GPU来替代传统的CPU训练集群,以提升训练的效率。 喜马拉雅AI云借助阿里云机器学习平台PAI的开源框架HybridBackend(以下简称HybridBackend),实现了其推荐模型在 GPU 上的高效训练。在加速训练的同时, HybridBackend 框架高度易用,帮助其算法团队提升了开发效率。 问题与挑战 随...
相关文章
文章评论
共有0条评论来说两句吧...
文章二维码
点击排行
推荐阅读
最新文章
- Jdk安装(Linux,MacOS,Windows),包含三大操作系统的最全安装
- Springboot2将连接池hikari替换为druid,体验最强大的数据库连接池
- SpringBoot2初体验,简单认识spring boot2并且搭建基础工程
- Windows10,CentOS7,CentOS8安装MongoDB4.0.16
- Windows10,CentOS7,CentOS8安装Nodejs环境
- SpringBoot2全家桶,快速入门学习开发网站教程
- SpringBoot2配置默认Tomcat设置,开启更多高级功能
- CentOS8编译安装MySQL8.0.19
- SpringBoot2编写第一个Controller,响应你的http请求并返回结果
- Docker使用Oracle官方镜像安装(12C,18C,19C)