首页 文章 精选 留言 我的
优秀的个人博客,低调大师

微信关注我们

原文链接:https://my.oschina.net/u/5057806/blog/5585251

转载内容版权归作者及来源网站所有!

低调大师中文资讯倾力打造互联网数据资讯、行业资源、电子商务、移动互联网、网络营销平台。持续更新报道IT业界、互联网、市场资讯、驱动更新,是最及时权威的产业资讯及硬件资讯报道平台。

聊聊 TDengine 3.0 中的事务机制

不知大家是否已经留意到,在TDengine3.0 的官方文档(https://docs.taosdata.com/taos-sql/show/#)中,有了这样一个命令 :show transactions。顾名思义,这是“事务”。 在 Database 的语境中,满足 ACID 属性的数据库操作序列即可称为事务,它是数据库的一个不可拆分的工作单元,包含着一个数据库操作的序列,这些操作要么全部执行,要么全部不执行。换个角度也可以说,事务是为了实现 ACID 特性的一种工具。 不过在 TDengine 中,依托于“一个数据采集点一张表”的设计理念,针对表的操作都是以队列方式逐个进行的,所以在绝大多数情况下都不需要事务机制。那 TDengine 3.0 中的“事务”是用来解决什么问题的呢?答案就是:3.0 中的事务机制并没有应用在业务数据上,而是针对数据库的元数据的,它的目的是利用事务的 ACID 特性,来强化元数据的一致性,因此,普通用户对此是无感知的,但是对 TDengine 的运维人员而言,意义会更大一些。 大家都知道 TDengine 3.0 是一款高性能、云原生的分布式时序数据库(...

仅需1% Embedding 参数,硬件成本降低百倍,开源方案单GPU训练超大推荐模型

深度推荐模型(DLRMs)已经成为深度学习在互联网公司应用的最重要技术场景,如视频推荐、购物搜索、广告推送等流量变现业务,极大改善了用户体验和业务商业价值。但海量的用户和业务数据,频繁地迭代更新需求,以及高昂的训练成本,都对DLRM训练提出了严峻挑战。 在DLRM中,需要先在嵌入表(EmbeddingBags)中进行查表(lookup),再完成下游计算。嵌入表常常贡献DLRM中99%以上的内存需求,却只贡献1%的计算量。借助于GPU片上高速内存(High Bandwidth Memory)和强大算力的帮助,GPU成为DLRM训练的主流硬件。但是,随着推荐系统研究的深入,日益增长的嵌入表大小和有限的GPU显存形成显著矛盾。如何让利用GPU高效训练超大DLRM模型,同时突破GPU内存墙的限制,已成为DLRM领域亟待解决的关键问题。 Colossal-AI此前已成功利用异构策略 将相同硬件上训练 NLP 模型的参数容量提升上百倍,近期成功将其拓展到推荐系统中,通过软件缓存(Cache)方法在CPU 和 GPU 内存中动态存储嵌入表。基于软件Cache设计,Colossal-A...

相关文章

发表评论

资源下载

更多资源
优质分享App

优质分享App

近一个月的开发和优化,本站点的第一个app全新上线。该app采用极致压缩,本体才4.36MB。系统里面做了大量数据访问、缓存优化。方便用户在手机上查看文章。后续会推出HarmonyOS的适配版本。

Mario

Mario

马里奥是站在游戏界顶峰的超人气多面角色。马里奥靠吃蘑菇成长,特征是大鼻子、头戴帽子、身穿背带裤,还留着胡子。与他的双胞胎兄弟路易基一起,长年担任任天堂的招牌角色。

Oracle

Oracle

Oracle Database,又名Oracle RDBMS,或简称Oracle。是甲骨文公司的一款关系数据库管理系统。它是在数据库领域一直处于领先地位的产品。可以说Oracle数据库系统是目前世界上流行的关系数据库管理系统,系统可移植性好、使用方便、功能强,适用于各类大、中、小、微机环境。它是一种高效率、可靠性好的、适应高吞吐量的数据库方案。

Eclipse

Eclipse

Eclipse 是一个开放源代码的、基于Java的可扩展开发平台。就其本身而言,它只是一个框架和一组服务,用于通过插件组件构建开发环境。幸运的是,Eclipse 附带了一个标准的插件集,包括Java开发工具(Java Development Kit,JDK)。