阿里云实时计算 Flink 版金融行业解决方案
行业挑战
近年来,随着互联网金融行业的飞速发展,传统金融机构(如交易所、证券公司、银行等)的各类业务与互联网的结合也越来越紧密,如:各大金融机构纷纷推出手机 APP 客户端,支持用户自主办理移动支付、理财、网络借贷、购买金融产品等各类金融业务。新的业务方式对金融行业也提出了新的要求:
- 长链路且快速变化的业务:从业务需求出发,需要分析用户的行为轨迹和交易记录,以应对业务的快速变化。
- 越来越多的实时数据需求:目前需要更多的实时数据来支持业务决策。比如需要依据流量监控、销售情况等,对不同的资源位做出相应调整;同时部分活动也需要实时数据来增强与用户的互动,尤其在金融产品营销活动中需要实时针对用户行为调整策略。
- 越来越高的数据质量要求:数据的结果会直接影响业务决策和线上运营活动的效果,数据质量也决定了计算结果是否可以作为判断的依据。
-
越来越多的实时风控需求:传统风控系统需要完成从依赖专家规则到智能风控的实时化转变,如信用违约、账户安全、贷款欺诈等典型场景:
- 欺诈检测:在办理业务过程中,对用户账号、交易行为等进行实时监控与识别。快速识别异常交易,减少造成用户财产损失的可能。
- 信用评估:在贷款等银行业务审核过程中,快速识别虚假资料、信息伪冒等恶意欺诈行为,并进行高危人群鉴别,整体信用风险评估等,缩短业务审核流程。
解决方案
基于实时计算 Flink 版的解决方案可帮助金融机构从容应对上述挑战,通过 Flink 构建实时数仓、实时反欺诈系统,助力金融机构快速构建实时风控体系。整个数仓体系架构如下:
实时数仓的数据处理过程涉及到以下几个关键环节:
-
数据产生:一般场景下,数据有两个来源:
- 用户行为日志:用户在 App 上的操作会产生一系列日志,包括点击、跳转、浏览、停留时长、机型、IP等信息。
- 数据库中相关信息:用户下单等业务类行为会被记录到数据库中。
- 数据采集:日志和数据库的内容,需要上报到消息队列中,使整条数据链路“流动”起来。比如日志中的数据,可通过日志采集等工具被实时上报到消息队列中。而数据库的数据(Binlog),可通过阿里云数据集成、DTS 产品或者其他开源组件被实时采集到消息队列中。
- 数据加工:消息队列(比如 DataHub/Kafka)的原始数据,往往在格式不齐、内容不全,需要经过数据清洗(ETL)之后,才能更好的被下游业务利用。而整个 ETL 过程,是实时数仓架构设计上非常重要的一环。该环节要做到延时小、成本低、可扩展性好、业务指标计算准确。
在系统选型上,需要选择 Flink 对数据进行处理,Flink 具有强大的数据处理能力,低延时、高吞吐,从而保证业务产出。同时阿里云上也推出了实时计算 Flink 版产品,为用户提供一站式高可用的 Flink 服务。
在数据架构设计上,也可以依据数仓的基本方法论来构建 ODS/DWD/ADS 层,从而减少数据冗余,降低数据存储成本,并且使数据结构具备更好的可扩展性。
- 数据分析:经过 Flink(ETL)处理好的部分数据可以直接被业务方使用,如 App 当日激活/PV/UV 等实时指标。另一部分数据需要经过多维分析才能被业务方使用,这就需要用到 OLAP 系统(如阿里云交互式分析),将数据写入 OLAP 系统后,通过与历史数据的合并查询,即可得到相关数据。
- 数据挖掘:从历史中预测未来一直是人类的梦想,对公司来说,能对未来趋势作出正确的判断才能基业长青。机器学习就是通过历史数据对未来进行预测的一种手段,可以使数据发挥最大的价值。
- 业务系统:经过处理的数据,可直接服务于相关业务方,如运营、决策者、相关应用等,如运营人员可通过实时报表中的数据及时调整运营策略,提高活动转化率;利用实时风控系统,实时预警风险事件,可避免业务损失等。
基于 Flink 的实时数仓架构:
Flink 主要用于实时数仓 ETL 及 BI 部分的指标计算,与各种上下游打通。
成功案例
众安保险
众安保险基于阿里云实时计算 Flink 版产品构建了实时数仓,其应用场景分为三类: 营销活动、实时大屏及反欺诈。
- 在营销活动中主要应用于营销活动流量和交易。通过实时计算可以动态观察用户进入活动各个入口的流量情况,以及活动的 PV/UV、交易量等。通过动态观测的用户行为,可制定更精准的营销策略,提高转化。
- 实时大屏主要应用于实时 KPI 指标监控,如当日保费、当日投保量、当日总体和分平台 PV/UV 等。
- 反欺诈主要应用于积分奖励等现金类的权益监控;针对某个入口是否为用户真实行为的实时监控判断、经纬度判断等。
随着业务快速变化发展,对实时计算的要求也越来越高,需要平台提供低延时、低资源消耗、高效率、高精准度等能力。在满足业务最基本需求的同时,我们也在充分利用实时计算 Flink 版平台的特性,丰富输入输出接口,保证数据质量。在未来的一段时期里, Flink 的 ML 和 Scala 版本也将会在 SQL 版本之上让实时计算在反欺诈方面和复杂的业务领域绽放精彩。
深交所
深圳证券交易所新一代监察系统围绕异常交易行为监管、违法违规线索筛查等核心业务,全面支持交易监控、调查分析、业务研究的一体化监管工作,遵循“安全高效、持续演进、主流开放、自主可控”的设计原则,打造了安全高效、灵活易用、具备较高包容性的分布式架构技术系统。
实时监控平台是监察系统的核心子系统。从架构设计、核心技术、计算能力、高可用和容灾设计等多方面考察,认为 Flink 能够代表实时计算技术的未来趋势,是实时监控平台技术路线的最佳选择。与 Storm 比较,Flink 提供了强大的状态管理机制,更加友好的编程接口以及 Exactly-Once 语义;与 Spark Streaming 比较,Flink 提供了更加强大的窗口计算能力,并且在性能上更加能够满足低时延的要求。
Flink 帮助应用管理状态,自动保存状态(Checkpoint),并提供多种后端实现。当应用需要维护大量状态时,可使用 RocksDB 状态后端,大大降低内存开销,缓解 GC 问题。在故障时,能够将应用状态恢复到最近一个检查点。
Flink SQL 强大的表达能力大大降低了流计算业务开发的门槛,可满足监察系统的实时统计和实时告警业务 80% 以上的开发需求。扩展 UDF、UDAF、UDTF,实现特定的业务功能性函数,进一步简化了业务研发。
Flink 窗口计算支持业务时间(Event Time),支持全量计算和增量计算等模式,优化的内部算法让性能指标十分出色,方便实现区间值指标计算。
Flink 基于 Chandy-Lamport 分布式快照算法,实现了自动故障处理。在系统出现故障时,作业可以从最近的一个状态快照中恢复并继续运行,且能保证内部数据处理的 Exactly-Once 语义。为监察系统实现高可用的分布式实时计算平台提供牢固的基础。
2019 年深交所与阿里巴巴实时计算团队签订合作协议。新一代监察系统的实时计算平台已安全、可靠地运行了近 300 天。截至 2020 年 4 月底,原始业务消息数量平均达 5千多笔/秒,峰值达到 120多万/秒,关键业务统计、监察报警计算平均耗时百毫秒,为核心监察实时业务提供了强有力的支撑。
[1] https://www.leiphone.com/news/201705/ZVhqW69XRJaKe3cD.html
[2] https://www.infoq.cn/article/wIwa7N6sFBR4QV-ScOgO
阿里云实时计算Flink - 解决方案:
https://developer.aliyun.com/article/765097
阿里云实时计算Flink - 场景案例:
https://ververica.cn/corporate-practice
阿里云实时计算Flink - 产品详情页:
https://www.aliyun.com/product/bigdata/product/sc

低调大师中文资讯倾力打造互联网数据资讯、行业资源、电子商务、移动互联网、网络营销平台。
持续更新报道IT业界、互联网、市场资讯、驱动更新,是最及时权威的产业资讯及硬件资讯报道平台。
转载内容版权归作者及来源网站所有,本站原创内容转载请注明来源。
- 上一篇
重磅发布!阿里云实时计算 Flink 版9大行业应用案例汇总
Apache Flink:全球领先的开源大数据计算引擎 Apache Flink 是一个开源的分布式大数据处理引擎, 可对有限数据流和无限数据流进行有状态计算。作为 Apache 软件基金会 (ASF) 顶级项目之一,Flink 在流处理方面具有绝对的优势,提供高吞吐、低延时的计算能力, Exactly-once 语义保证数据的准确性,亚秒级别的处理延迟确保业务的快速响应。 作为快速发展的新一代大数据引擎,Flink 本身的架构优势也吸引着越来越多的开源爱好者投入到社区的建设来。 截止到 2020 年 7 月,社区的 star 数达到 13600+ ,contributor 数达到 718,有 22989 次 commits。伴随着社区的快速发展,Flink 也成为类似阿里巴巴、腾讯、字节跳动、滴滴、美团点评等知名公司建设流处理平台的首选。 Apache Flink 的系统架构 完整白皮书下载>>> https://files.alicdn.com/tpsservice/b3d617d245349b87d55bf370c1fd71d7.pdf 阿里云实时计算 Flin...
- 下一篇
教你 4 步搭建弹性可扩展的 WebAPI
作者 | 萧起 阿里云云原生团队 本文整理自《Serverless 技术公开课》,关注“Serverless”公众号,回复“入门”,即可获取 Serverless 系列文章 PPT。 导读:本节课程主要分为三个部分,基本概念中介绍基于函数计算的 WebAPI 与普通的 WebAPI 的区别及优势;开发流程中介绍如何在函数计算的控制台进行 WebAPI 的开发;操作演示中会实例演示函数计算 WebAPI 的开发过程。 基本概念 常见的 WebAPI 架构如上图所示,主要包括客户端(浏览器)、服务器、数据库,WebAPI 由服务器提供,同时服务器要完成负载均衡、登录鉴权的相关操作。 当客户端流量快速增大时,服务器端只能通过水平扩展加机器的方式来增加提高服务能力。 这种常规模式主要有两点局限性: 技术同学除了开发业务代码,有大量的服务器运维成本,来保证服务的稳定性、可用性,技术同学要花费很多时间进行运维工作,占用开发时间,降低项目研发效率。 流量突然增加时,需要水平扩展加机器,弹性的响应能力差,扩容速度往往要数十分钟,无法实现秒级极速扩容,导致一段时间内的服务能力不足。同时当流量变少时,难以...
相关文章
文章评论
共有0条评论来说两句吧...
文章二维码
点击排行
推荐阅读
最新文章
- SpringBoot2初体验,简单认识spring boot2并且搭建基础工程
- CentOS8安装Docker,最新的服务器搭配容器使用
- SpringBoot2整合Thymeleaf,官方推荐html解决方案
- Docker使用Oracle官方镜像安装(12C,18C,19C)
- CentOS7,8上快速安装Gitea,搭建Git服务器
- 设置Eclipse缩进为4个空格,增强代码规范
- SpringBoot2全家桶,快速入门学习开发网站教程
- Springboot2将连接池hikari替换为druid,体验最强大的数据库连接池
- Red5直播服务器,属于Java语言的直播服务器
- Docker安装Oracle12C,快速搭建Oracle学习环境