浅谈企业数据目录
最近又遇到一个数据相关的咨询项目,为一家企业整理数据服务目录,今天就来讨论下企业数据目录架构和它的部署方式。 企业数据目录(EDC)旨在帮助企业与IT人员通过统一的元数据视图(包括技术元数据、业务元数据、用户释义、关联关系、数据质量和用途)来释放企业数据资产的最大能量。 我们从下至上来看下EDC的一个架构,最下面是存储层,在这一层,EDC包含了传统的结构化数据库用来存储EDC的管理员数据、可视化配置数据、数据域的规则,runtime统计数据等等,其中一部分结构化数据来自于各接入应用的元数据,称为模型库服务(Model Repository Service,MRS)使所有接入的应用可以在一个关系型数据库中进行协同;另一部分结构化数据称为数据剖析仓库(Profiling Warehouse,PWH),用来存储数据剖析信息,例如剖析结果和计分卡结果。在存储层EDC也可以接入各种非结构化数据,例如Hadoop分布式存储系统以及其上的HBASE等开源产品。
往上一层,对于接入的结构化数据的数据源,有剖析引擎(Data Profiling Engine)对数据集的唯一性,特征值频率以及数据集所属的数据域进行分析;在另一边Hadoop社区有自己的分布式引擎系统,例如用来快速将各类元数据加载到HBase的Spark组件,以及支持多条件搜索并建立实时索引的Solr组件。 所有的数据处理都是为了能提供数据服务,最通用的不外乎搜索,包括数据间关系、血缘的搜索,数据域的搜索。还有就是生成报表作业的管理计划。除了直接对外提供服务外,这一层还有一些插件对数据进行进一步加工,例如对跨数据集的数据相似性进行比较的分析器,对数据集进行到数据域的归集,以及将非结构化元数据导入到HBase的摄入服务。最终服务层有统一的对外API接口将数据域转化成数据目录作为EDC的主体。 EDC支持的分布式Hadoop产品包括Cloudera,Hortonworks以及Azure HDInsight,在Hadoop上,EDC可以部署自己的HBase,Solr以及Spark实例作为Yarn应用。不过市面上的一些EDC产品,例如Informatica有自带的Hadoop集群,和自身的HBase,Solr和Spark可以打包部署。
EDC的数据源通常来自各业务系统、BI系统、数据库、数仓和数据集成总线,经过存储层的元数据提取及数据剖析在EDC集群内建立元数据集群、创建元数据处理框架(内容包括MRS,监控模型库服务,集群服务,目录服务以及内容管理服务)以及数据域建制(Profiling)即数据集成服务。
上图是EDC服务的架构图。Profiling服务器需要连接PWH和通过内容管理服务关联的参考数据库(REF)。架构服务器(Infrastructure Server)需要连接MRS数据库,其上的EDC服务通过到Spark、HBase和Solr的连接器对接企业的非结构化数据;通过MRS关联数据集成服务深入数据湖对接企业的结构化数据。MRS对外提供开发接口可对数据集成方式及作业管理进行客制化,同时通过分析服务对外输出业务术语表(Business Glossary)。而EDC的对外接口可以给管理员提供对数据域的定义,也可以开放给用户对业务场景进行客制化。 由于EDC牵涉到全域的数据,对于安全管控也是不可忽视的一环,在EDC中往往会通过Kerberos,即三方验证的方法对访问进行权限控制。
上面这张图比较复杂,简单的说即时用户访问凭证通过一个第三方机构来保管,以保证验证的独立性。
以Informatica为例,以上是EDC的仪表盘,点击各个图标可以查看具体的源数据和历史数据。并且通过对大数据的AI分析,可以对未来趋势做出预判。

低调大师中文资讯倾力打造互联网数据资讯、行业资源、电子商务、移动互联网、网络营销平台。
持续更新报道IT业界、互联网、市场资讯、驱动更新,是最及时权威的产业资讯及硬件资讯报道平台。
转载内容版权归作者及来源网站所有,本站原创内容转载请注明来源。
- 上一篇
通过Job Committer保证Mapreduce/Spark任务数据一致性
并发地向目标存储系统写数据是分布式任务的一个天然特性,通过在节点/进程/线程等级别的并发写数据,充分利用集群的磁盘和网络带宽,实现高容量吞吐。并发写数据的一个主要需要解决的问题就是如何保证数据一致性的问题,具体来说,需要解决下面列出的各个问题: 在分布式任务写数据的过程中,如何保证中间数据对外不可见。 在分布式任务正常完成后,保证所有的结果数据同时对外可见。 在分布式任务失败时,所有结果数据对外不可见且能正确清理。 开启预测执行时,保证多个执行相同任务的task只有一份结果数据在最终结果中。 此外,还要一些作业的异常情况需要处理,例如task失败重试,作业重启等等。Job Committer是MapReduce用来实现分布式写入一致性的保证,通过Job Committer的各种实现,保证MapReduce任务在各种异常场景中数据写出的一致性。Spark支持MapReduce的JobCommitter,同样也是通过JobCommitter实现Spark作业写出数据的一致性。 JobCommitter接口 MapReduce有V1和V2两套API接口,在包名中以mapred和mapredu...
- 下一篇
【视点】混合型事务处理
在线事务处理一般可分为在线交易事务处理(OLTP)和在线分析事务处理(OLAP),也有叫联机交易处理和联机分析处理。而混合型事务处理(HTAP)则融合了上述两种事务类型,即一个系统同时很好的满足OLTP和OLAP的需求。 早在2014年Gartner的报告就明确指出了:“混合型交易/分析事务处理(HTAP)将帮助应用提升场景识别能力,增强业务敏捷性。这将引发由内存计算技术催生的现有架构和IT科技的剧变”。 电子商务领域就有很多混合型事务处理的例子,比如信用卡消费,既要计算当前消费,又要按T+1统计剩余额度;个性化引擎,既要应对当下行为,又要根据偏差调整推荐算法;物联网事件处理器等等。 当然作为这样一套系统,首先它需要满足一些非功能的需求,包括每秒10万次以上的并发处理能力;可以与应用同步线性扩展;零网络延时、零数据丢失。在功能性上,它需要支持纯Java技术栈的业务逻辑以及可以接受来自流处理框架([【观察】常用的流式框架(一)-- Storm与Samza](https://yq.aliyun.com/articles/750868?spm=a2c4e.11155435.0.0.409a3...
相关文章
文章评论
共有0条评论来说两句吧...
文章二维码
点击排行
推荐阅读
最新文章
- SpringBoot2编写第一个Controller,响应你的http请求并返回结果
- Docker快速安装Oracle11G,搭建oracle11g学习环境
- Windows10,CentOS7,CentOS8安装Nodejs环境
- Hadoop3单机部署,实现最简伪集群
- Eclipse初始化配置,告别卡顿、闪退、编译时间过长
- 设置Eclipse缩进为4个空格,增强代码规范
- CentOS7编译安装Gcc9.2.0,解决mysql等软件编译问题
- Springboot2将连接池hikari替换为druid,体验最强大的数据库连接池
- Docker安装Oracle12C,快速搭建Oracle学习环境
- Windows10,CentOS7,CentOS8安装MongoDB4.0.16