Hadoop环境中管理大数据存储八大技巧
在现如今,随着IT互联网信息技术的飞速发展和进步。目前大数据行业也越来越火爆,从而导致国内大数据人才也极度缺乏,下面介绍一下关于Hadoop环境中管理大数据存储技巧。
1、分布式存储
传统化集中式存储存在已有一段时间。但大数据并非真的适合集中式存储架构。Hadoop设计用于将计算更接近数据节点,同时采用了HDFS文件系统的大规模横向扩展功能。
虽然,通常解决Hadoop管理自身数据低效性的方案是将Hadoop数据存储在SAN上。但这也造成了它自身性能与规模的瓶颈。现在,如果你把所有的数据都通过集中式SAN处理器进行处理,与Hadoop的分布式和并行化特性相悖。你要么针对不同的数据节点管理多个SAN,要么将所有的数据节点都集中到一个SAN。
但Hadoop是一个分布式应用,就应该运行在分布式存储上,这样存储就保留了与Hadoop本身同样的灵活性,不过它也要求拥抱一个软件定义存储方案,并在商用服务器上运行,这相比瓶颈化的Hadoop自然更为高效。
2、超融合VS分布式
注意,不要混淆超融合与分布式。某些超融合方案是分布式存储,但通常这个术语意味着你的应用和存储都保存在同一计算节点上。这是在试图解决数据本地化的问题,但它会造成太多资源争用。这个Hadoop应用和存储平台会争用相同的内存和CPU。Hadoop运行在专有应用层,分布式存储运行在专有存储层这样会更好。之后,利用缓存和分层来解决数据本地化并补偿网络性能损失。
3、避免控制器瓶颈(ControllerChokePoint)
实现目标的一个重要方面就是——避免通过单个点例如一个传统控制器来处理数据。反之,要确保存储平台并行化,性能可以得到显著提升。
此外,这个方案提供了增量扩展性。为数据湖添加功能跟往里面扔x86服务器一样简单。一个分布式存储平台如有需要将自动添加功能并重新调整数据。
4、删重和压缩
掌握大数据的关键是删重和压缩技术。通常大数据集内会有70%到90%的数据简化。以PB容量计,能节约数万美元的磁盘成本。现代平台提供内联(对比后期处理)删重和压缩,大大降低了存储数据所需能力。
5、合并Hadoop发行版
很多大型企业拥有多个Hadoop发行版本。可能是开发者需要或是企业部门已经适应了不同版本。无论如何最终往往要对这些集群的维护与运营。一旦海量数据真正开始影响一家企业时,多个Hadoop发行版存储就会导致低效性。我们可以通过创建一个单一,可删重和压缩的数据湖获取数据效率
6、虚拟化Hadoop
虚拟化已经席卷企业级市场。很多地区超过80%的物理服务器现在是虚拟化的。但也仍有很多企业因为性能和数据本地化问题对虚拟化Hadoop避而不谈。
7、创建弹性数据湖
创建数据湖并不容易,但大数据存储可能会有需求。我们有很多种方法来做这件事,但哪一种是正确的?这个正确的架构应该是一个动态,弹性的数据湖,可以以多种格式(架构化,非结构化,半结构化)存储所有资源的数据。更重要的是,它必须支持应用不在远程资源上而是在本地数据资源上执行。
不幸的是,传统架构和应用(也就是非分布式)并不尽如人意。随着数据集越来越大,将应用迁移到数据不可避免,而因为延迟太长也无法倒置。
理想的数据湖基础架构会实现数据单一副本的存储,而且有应用在单一数据资源上执行,无需迁移数据或制作副本。
8、整合分析
分析并不是一个新功能,它已经在传统RDBMS环境中存在多年。不同的是基于开源应用的出现,以及数据库表单和社交媒体,非结构化数据资源(比如,维基百科)的整合能力。关键在于将多个数据类型和格式整合成一个标准的能力,有利于更轻松和一致地实现可视化与报告制作。合适的工具也对分析/商业智能项目的成功至关重要。
本文作者:佚名
来源:51CTO

低调大师中文资讯倾力打造互联网数据资讯、行业资源、电子商务、移动互联网、网络营销平台。
持续更新报道IT业界、互联网、市场资讯、驱动更新,是最及时权威的产业资讯及硬件资讯报道平台。
转载内容版权归作者及来源网站所有,本站原创内容转载请注明来源。
- 上一篇
OPEN AI LAB,这个实验室如何加速人工智能的“进化”? | 深度
人工智能,每一个字都散发着阳春白雪的未来气息。 然而,正如“苹果高高在上, Android 手机才推动智能手机普及”一样,真正改变人们生活的,往往是“下里巴人”。 最近,三家顶尖的人工智能硬件和算法公司联合成立了“OPEN AI LAB”开放人工智能实验室。当然,这个实验室的酷炫之处绝不仅仅在于所有的字母都大写。我们先来看看创建实验室的四家大咖: ARM 中国(顶级芯片 IP 设计厂商) 安创空间(ARM 在中国的生态系统加速器) 全志科技(为小米、富士康、惠普提供处理器 SoC 的芯片大咖) 地平线机器人技术(由前百度深度学习研究院院长余凯博士创建的,顶尖的嵌入式人工智能算法和芯片设计公司) 简单说来,“OPEN AI LAB”就是团结在 ARM 周围的人工智能芯片算法大咖组建的“别动队”。这个别动队,要做“最接地气的人工智能平台框架”。 【安
- 下一篇
6个用于大数据处理分析的最好工具
大数据是一个含义广泛的术语,是指数据集,如此庞大而复杂的,他们需要专门设计的硬件和软件工具进行处理。该数据集通常是万亿或EB的大小。这些数据集收集自各种各样的来源:传感器,气候信息,公开的信息,如杂志,报纸,文章。大数据产生的其他例子包括购买交易记录,网络日志,病历,军事监控,视频和图像档案,及大型电子商务。 大数据和大数据分析,他们对企业的影响有一个兴趣高涨。大数据分析是研究大量的数据的过程中寻找模式,相关性和其他有用的信息,可以帮助企业更好地适应变化,并做出更明智的决策。 一、Hadoop Hadoop 是一个能够对大量数据进行分布式处理的软件框架。但是 Hadoop 是以一种可靠、高效、可伸缩的方式进行处理的。Hadoop 是可靠的,因为它假设计算元素和存储会失败,因此它维护多个工作数据副本,确保能够针对失败的节点重新分布处理。Hadoop 是高效的,因为它以并行的方式工作,通过并行处理加快处理速度。Hadoop 还是可伸缩的,能够处理 PB 级数据。此外,Hadoop 依赖于社区服务器,因此它的成本比较低,任何人都可以使用。 Hadoop是一个能够让用户轻松架构和使用的分布式计...
相关文章
文章评论
共有0条评论来说两句吧...
文章二维码
点击排行
-
Docker使用Oracle官方镜像安装(12C,18C,19C)
- Springboot2将连接池hikari替换为druid,体验最强大的数据库连接池
- Docker快速安装Oracle11G,搭建oracle11g学习环境
- CentOS8编译安装MySQL8.0.19
- SpringBoot2配置默认Tomcat设置,开启更多高级功能
- MySQL8.0.19开启GTID主从同步CentOS8
- Jdk安装(Linux,MacOS,Windows),包含三大操作系统的最全安装
- CentOS7,8上快速安装Gitea,搭建Git服务器
- SpringBoot2编写第一个Controller,响应你的http请求并返回结果
推荐阅读
最新文章
- Jdk安装(Linux,MacOS,Windows),包含三大操作系统的最全安装
- SpringBoot2初体验,简单认识spring boot2并且搭建基础工程
- CentOS8,CentOS7,CentOS6编译安装Redis5.0.7
- CentOS7编译安装Gcc9.2.0,解决mysql等软件编译问题
- CentOS6,CentOS7官方镜像安装Oracle11G
- CentOS8编译安装MySQL8.0.19
- CentOS6,7,8上安装Nginx,支持https2.0的开启
- Hadoop3单机部署,实现最简伪集群
- Docker使用Oracle官方镜像安装(12C,18C,19C)
- Windows10,CentOS7,CentOS8安装MongoDB4.0.16