首页 文章 精选 留言 我的
优秀的个人博客,低调大师

微信关注我们

原文链接:https://yq.aliyun.com/articles/690876

转载内容版权归作者及来源网站所有!

低调大师中文资讯倾力打造互联网数据资讯、行业资源、电子商务、移动互联网、网络营销平台。持续更新报道IT业界、互联网、市场资讯、驱动更新,是最及时权威的产业资讯及硬件资讯报道平台。

想知道什么是零停机重启工具?Huptime教帮你 !

前言Huptime (High uptime)是零停机重启实用程序,不需要修改你的程序。 虽然很多应用支持运行的时候重载配置,但是一个零停机重启允许升级应用代码,不需要停止任何活动。 基础示例 终端: huptime --exec python -m SimpleHTTPServer & PID=$! 第二个终端 while true; do curl http://localhost:8000 2>/dev/null || echo "fail"; done 第三个终端: kill -HUP $PID 第二个终端不会输出 "fail" Huptime 最低要求: make gcc and g++ python rpmbuild (optional) and dpkg (optional) 小编推荐一个学python的学习qun 740322234 无论你是大牛还是小白,是想转行还是想入行都可以来了解一起进步一起学习!裙内有开发工具,很多干货和技术资料分享!

论文解读 | 数十亿商品中,长尾和新品怎么找到新主人?

小叽导读:在推荐系统的发展历程中,面临两个核心问题:用户的长尾覆盖度以及新商品的冷启动,在这两个维度下的模型扩展能力的瓶颈一直以来对广大推荐算法工程师都是不小的挑战。本文基于Graph Embedding的理论知识提出了创新框架,旨在提升商品推荐的多样性和发现性。 一、背景介绍淘宝个性化推荐场景所面对的数以十亿计的用户、商品、交互数据和各类属性构成了一个规模庞大的异构网络,如果能将网络中的各类信息统一建模在同一个维度空间,用向量的方式进行表达,它的简洁和灵活性会有巨大的应用空间。据我们所知,业界尚未有对如此大规模复杂网络进行graph embedding建模的成熟应用。 在本篇论文中,我们针对推荐场景,基于Graph Embedding的理论知识创新框架: 利用用户的序列化行为构建graph,结合随机游走技术对用户行为进行"虚拟采样"拟

相关文章

发表评论

资源下载

更多资源
Mario

Mario

马里奥是站在游戏界顶峰的超人气多面角色。马里奥靠吃蘑菇成长,特征是大鼻子、头戴帽子、身穿背带裤,还留着胡子。与他的双胞胎兄弟路易基一起,长年担任任天堂的招牌角色。

Apache Tomcat

Apache Tomcat

Tomcat是Apache 软件基金会(Apache Software Foundation)的Jakarta 项目中的一个核心项目,由Apache、Sun 和其他一些公司及个人共同开发而成。因为Tomcat 技术先进、性能稳定,而且免费,因而深受Java 爱好者的喜爱并得到了部分软件开发商的认可,成为目前比较流行的Web 应用服务器。

Eclipse

Eclipse

Eclipse 是一个开放源代码的、基于Java的可扩展开发平台。就其本身而言,它只是一个框架和一组服务,用于通过插件组件构建开发环境。幸运的是,Eclipse 附带了一个标准的插件集,包括Java开发工具(Java Development Kit,JDK)。

JDK

JDK

JDK是 Java 语言的软件开发工具包,主要用于移动设备、嵌入式设备上的java应用程序。JDK是整个java开发的核心,它包含了JAVA的运行环境(JVM+Java系统类库)和JAVA工具。