您现在的位置是:首页 > 文章详情

Spark 源码分析之ShuffleMapTask内存数据Spill和合并

日期:2018-12-14点击:242

Spark 源码分析之ShuffleMapTask内存数据Spill和合并

更多资源分享

前置条件

  • Hadoop版本: Hadoop 2.6.0-cdh5.15.0
  • Spark版本: SPARK 1.6.0-cdh5.15.0
  • JDK.1.8.0_191
  • scala2.10.7

技能标签

  • Spark ShuffleMapTask 内存中的数据Spill到临时文件
  • 临时文件中的数据是如何定入的,如何按partition升序排序,再按Key升序排序写入(key,value)数据
  • 每个临时文件,都存入对应的每个分区有多少个(key,value)对,有多少次流提交数组,数组中保留每次流的大小
  • 如何把临时文件合成一个文件
  • 如何把内存中的数据和临时文件,进行分区,按key,排序后,再写入合并文件中

内存中数据Spill到磁盘

  • ShuffleMapTask进行当前分区的数据读取(此时读的是HDFS的当前分区,注意还有一个reduce分区,也就是ShuffleMapTask输出文件是已经按Reduce分区处理好的)
  • SparkEnv指定默认的SortShuffleManager,getWriter()中匹配BaseShuffleHandle对象,返回SortShuffleWriter对象
  • SortShuffleWriter,用的是ExternalSorter(外部排序对象进行排序处理),会把rdd.iterator(partition, context)的数据通过iterator插入到ExternalSorter中PartitionedAppendOnlyMap对象中做为内存中的map对象数据,每插入一条(key,value)的数据后,会对当前的内存中的集合进行判断,如果满足溢出文件的条件,就会把内存中的数据写入到SpillFile文件中
  • 满中溢出文件的条件是,每插入32条数据,并且,当前集合中的数据估值大于等于5m时,进行一次判断,会通过算法验证对内存的影响,确定是否可以溢出内存中的数据到文件,如果满足就把当前内存中的所有数据写到磁盘spillFile文件中
  • SpillFile调用org.apache.spark.util.collection.ExternalSorter.SpillableIterator.spill()方法处理
  • WritablePartitionedIterator迭代对象对内存中的数据进行迭代,DiskBlockObjectWriter对象写入磁盘,写入的数据格式为(key,value),不带partition的
  • ExternalSorter.spillMemoryIteratorToDisk()这个方法将内存数据迭代对象WritablePartitionedIterator写入到一个临时文件,SpillFile临时文件用DiskBlockObjectWriter对象来写入数据
  • 临时文件的格式temp_local_+UUID
  • 遍历内存中的数据写入到临时文件,会记录每个临时文件中每个分区的(key,value)各有多少个,elementsPerPartition(partitionId) += 1 如果说数据很大的话,会每默认每10000条数据进行Flush()一次数据到文件中,会记录每一次Flush的数据大小batchSizes入到ArrayBuffer中保存
  • 并且在数据写入前,会进行排序,先按key的hash分区,先按partition的升序排序,再按key的升序排序,这样来写入文件中,以保证读取临时文件时可以分隔开每个临时文件的每个分区的数据,对于一个临时文件中一个分区的数据量比较大的话,会按流一批10000个(key,value)进行读取,读取的大小讯出在batchSizes数据中,就样读取的时候就非常方便了

内存数据Spill和合并

  • 把数据insertAll()到ExternalSorter中,完成后,此时如果数据大的话,会进行溢出到临时文件的操作,数据写到临时文件后
  • 把当前内存中的数据和临时文件中的数据进行合并数据文件,合并后的文件只包含(key,value),并且是按partition升序排序,然后按key升序排序,输出文件名称:ShuffleDataBlockId(shuffleId, mapId, NOOP_REDUCE_ID) + UUID 即:"shuffle_" + shuffleId + "" + mapId + "" + reduceId + ".data" + UUID,reduceId为默认值0
  • 还会有一份索引文件: "shuffle_" + shuffleId + "" + mapId + "" + reduceId + ".index" + "." +UUID,索引文件依次存储每个partition的位置偏移量
  • 数据文件的写入分两种情况,一种是直接内存写入,没有溢出临时文件到磁盘中,这种是直接在内存中操作的(数据量相对小些),另外单独分析
  • 一种是有磁盘溢出文件的,这种情况是本文重点分析的情况
  • ExternalSorter.partitionedIterator()方法可以处理所有磁盘中的临时文件和内存中的文件,返回一个可迭代的对象,里边放的元素为reduce用到的(partition,Iterator(key,value)),迭代器中的数据是按key升序排序的
  • 具体是通过ExternalSorter.mergeWithAggregation(),遍历每一个临时文件中当前partition的数据和内存中当前partition的数据,注意,临时文件数据读取时是按partition为0开始依次遍历的

源码分析(内存中数据Spill到磁盘)

ShuffleMapTask

  • 调用ShuffleMapTask.runTask()方法处理当前HDFS分区数据

  • 调用SparkEnv.get.shuffleManager得到SortShuffleManager

  • SortShuffleManager.getWriter()得到SortShuffleWriter

  • 调用SortShuffleWriter.write()方法

  • SparkEnv.create()

 val shortShuffleMgrNames = Map( "hash" -> "org.apache.spark.shuffle.hash.HashShuffleManager", "sort" -> "org.apache.spark.shuffle.sort.SortShuffleManager", "tungsten-sort" -> "org.apache.spark.shuffle.sort.SortShuffleManager") val shuffleMgrName = conf.get("spark.shuffle.manager", "sort") val shuffleMgrClass = shortShuffleMgrNames.getOrElse(shuffleMgrName.toLowerCase, shuffleMgrName) val shuffleManager = instantiateClass[ShuffleManager](shuffleMgrClass) 
 override def runTask(context: TaskContext): MapStatus = { // Deserialize the RDD using the broadcast variable. val deserializeStartTime = System.currentTimeMillis() val ser = SparkEnv.get.closureSerializer.newInstance() val (rdd, dep) = ser.deserialize[(RDD[_], ShuffleDependency[_, _, _])]( ByteBuffer.wrap(taskBinary.value), Thread.currentThread.getContextClassLoader) _executorDeserializeTime = System.currentTimeMillis() - deserializeStartTime metrics = Some(context.taskMetrics) var writer: ShuffleWriter[Any, Any] = null try { val manager = SparkEnv.get.shuffleManager writer = manager.getWriter[Any, Any](dep.shuffleHandle, partitionId, context) writer.write(rdd.iterator(partition, context).asInstanceOf[Iterator[_ <: Product2[Any, Any]]]) writer.stop(success = true).get } catch { case e: Exception => try { if (writer != null) { writer.stop(success = false) } } catch { case e: Exception => log.debug("Could not stop writer", e) } throw e } } 

SortShuffleWriter

  • 调用SortShuffleWriter.write()方法
  • 根据RDDDependency中mapSideCombine是否在map端合并,这个是由算子决定,reduceByKey中mapSideCombine为true,groupByKey中mapSideCombine为false,会new ExternalSorter()外部排序对象进行排序
  • 然后把records中的数据插入ExternalSorter对象sorter中,数据来源是HDFS当前的分区
/** Write a bunch of records to this task's output */ override def write(records: Iterator[Product2[K, V]]): Unit = { sorter = if (dep.mapSideCombine) { require(dep.aggregator.isDefined, "Map-side combine without Aggregator specified!") new ExternalSorter[K, V, C]( context, dep.aggregator, Some(dep.partitioner), dep.keyOrdering, dep.serializer) } else { // In this case we pass neither an aggregator nor an ordering to the sorter, because we don't // care whether the keys get sorted in each partition; that will be done on the reduce side // if the operation being run is sortByKey. new ExternalSorter[K, V, V]( context, aggregator = None, Some(dep.partitioner), ordering = None, dep.serializer) } sorter.insertAll(records) // Don't bother including the time to open the merged output file in the shuffle write time, // because it just opens a single file, so is typically too fast to measure accurately // (see SPARK-3570). val output = shuffleBlockResolver.getDataFile(dep.shuffleId, mapId) val tmp = Utils.tempFileWith(output) try { val blockId = ShuffleBlockId(dep.shuffleId, mapId, IndexShuffleBlockResolver.NOOP_REDUCE_ID) val partitionLengths = sorter.writePartitionedFile(blockId, tmp) shuffleBlockResolver.writeIndexFileAndCommit(dep.shuffleId, mapId, partitionLengths, tmp) mapStatus = MapStatus(blockManager.shuffleServerId, partitionLengths) } finally { if (tmp.exists() && !tmp.delete()) { logError(s"Error while deleting temp file ${tmp.getAbsolutePath}") } } } 
  • ExternalSorter.insertAll()方法
  • 该方法会把迭代器records中的数据插入到外部排序对象中
  • ExternalSorter中的数据是不进行排序的,是以数组的形式存储的,健存的为(partition,key),值为Shuffle之前的RDD链计算结果 在内存中会对相同的key,进行合并操作,就是map端本地合并,合并的函数就是reduceByKey(+)这个算子中定义的函数
  • maybeSpillCollection方法会判断是否满足磁盘溢出到临时文件,满足条件,会把当前内存中的数据写到磁盘中,写到磁盘中的数据是按partition升序排序,再按key升序排序,就是(key,value)的临时文件,不带partition,但是会记录每个分区的数量elementsPerPartition(partitionId- 记录每一次Flush的数据大小batchSizes入到ArrayBuffer中保存
  • 内存中的数据存在PartitionedAppendOnlyMap,记住这个对象,后面排序用到了这个里边的排序算法
@volatile private var map = new PartitionedAppendOnlyMap[K, C] def insertAll(records: Iterator[Product2[K, V]]): Unit = { // TODO: stop combining if we find that the reduction factor isn't high val shouldCombine = aggregator.isDefined if (shouldCombine) { // Combine values in-memory first using our AppendOnlyMap val mergeValue = aggregator.get.mergeValue val createCombiner = aggregator.get.createCombiner var kv: Product2[K, V] = null val update = (hadValue: Boolean, oldValue: C) => { if (hadValue) mergeValue(oldValue, kv._2) else createCombiner(kv._2) } while (records.hasNext) { addElementsRead() kv = records.next() map.changeValue((getPartition(kv._1), kv._1), update) maybeSpillCollection(usingMap = true) } } else { // Stick values into our buffer while (records.hasNext) { addElementsRead() val kv = records.next() buffer.insert(getPartition(kv._1), kv._1, kv._2.asInstanceOf[C]) maybeSpillCollection(usingMap = false) } } } 
  • ExternalSorter.maybeSpillCollection
  • estimatedSize当前内存中数据预估占内存大小
  • maybeSpill满足Spill条件就把内存中的数据写入到临时文件中
  • 调用ExternalSorter.maybeSpill()
/** * Spill the current in-memory collection to disk if needed. * * @param usingMap whether we're using a map or buffer as our current in-memory collection */ private def maybeSpillCollection(usingMap: Boolean): Unit = { var estimatedSize = 0L if (usingMap) { estimatedSize = map.estimateSize() if (maybeSpill(map, estimatedSize)) { map = new PartitionedAppendOnlyMap[K, C] } } else { estimatedSize = buffer.estimateSize() if (maybeSpill(buffer, estimatedSize)) { buffer = new PartitionedPairBuffer[K, C] } } if (estimatedSize > _peakMemoryUsedBytes) { _peakMemoryUsedBytes = estimatedSize } } 
  • ExternalSorter.maybeSpill()
  • 对内存中的数据遍历时,每遍历32个元素,进行判断,当前内存是否大于5m,如果大于5m,再进行内存的计算,如果满足就把内存中的数据写到临时文件中
  • 如果满足条件,调用ExternalSorter.spill()方法,将内存中的数据写入临时文件
 /** * Spills the current in-memory collection to disk if needed. Attempts to acquire more * memory before spilling. * * @param collection collection to spill to disk * @param currentMemory estimated size of the collection in bytes * @return true if `collection` was spilled to disk; false otherwise */ protected def maybeSpill(collection: C, currentMemory: Long): Boolean = { var shouldSpill = false if (elementsRead % 32 == 0 && currentMemory >= myMemoryThreshold) { // Claim up to double our current memory from the shuffle memory pool val amountToRequest = 2 * currentMemory - myMemoryThreshold val granted = acquireOnHeapMemory(amountToRequest) myMemoryThreshold += granted // If we were granted too little memory to grow further (either tryToAcquire returned 0, // or we already had more memory than myMemoryThreshold), spill the current collection shouldSpill = currentMemory >= myMemoryThreshold } shouldSpill = shouldSpill || _elementsRead > numElementsForceSpillThreshold // Actually spill if (shouldSpill) { _spillCount += 1 logSpillage(currentMemory) spill(collection) _elementsRead = 0 _memoryBytesSpilled += currentMemory releaseMemory() } shouldSpill } 
  • ExternalSorter.spill()
  • 调用方法collection.destructiveSortedWritablePartitionedIterator进行排序,即调用PartitionedAppendOnlyMap.destructiveSortedWritablePartitionedIterator进行排序()方法排序,最终会调用WritablePartitionedPairCollection.destructiveSortedWritablePartitionedIterator()排序,调用方法WritablePartitionedPairCollection.partitionedDestructiveSortedIterator(),没有实现,调用子类PartitionedAppendOnlyMap.partitionedDestructiveSortedIterator()方法
  • 调用方法ExternalSorter.spillMemoryIteratorToDisk() 将磁盘中的数据写入到spillFile临时文件中
 /** * Spill our in-memory collection to a sorted file that we can merge later. * We add this file into `spilledFiles` to find it later. * * @param collection whichever collection we're using (map or buffer) */ override protected[this] def spill(collection: WritablePartitionedPairCollection[K, C]): Unit = { val inMemoryIterator = collection.destructiveSortedWritablePartitionedIterator(comparator) val spillFile = spillMemoryIteratorToDisk(inMemoryIterator) spills.append(spillFile) } 
  • PartitionedAppendOnlyMap.partitionedDestructiveSortedIterator()调用排序算法WritablePartitionedPairCollection.partitionKeyComparator
  • 即先按分区数的升序排序,再按key的升序排序
/** * Implementation of WritablePartitionedPairCollection that wraps a map in which the keys are tuples * of (partition ID, K) */ private[spark] class PartitionedAppendOnlyMap[K, V] extends SizeTrackingAppendOnlyMap[(Int, K), V] with WritablePartitionedPairCollection[K, V] { def partitionedDestructiveSortedIterator(keyComparator: Option[Comparator[K]]) : Iterator[((Int, K), V)] = { val comparator = keyComparator.map(partitionKeyComparator).getOrElse(partitionComparator) destructiveSortedIterator(comparator) } def insert(partition: Int, key: K, value: V): Unit = { update((partition, key), value) } } /** * A comparator for (Int, K) pairs that orders them both by their partition ID and a key ordering. */ def partitionKeyComparator[K](keyComparator: Comparator[K]): Comparator[(Int, K)] = { new Comparator[(Int, K)] { override def compare(a: (Int, K), b: (Int, K)): Int = { val partitionDiff = a._1 - b._1 if (partitionDiff != 0) { partitionDiff } else { keyComparator.compare(a._2, b._2) } } } } } 
  • ExternalSorter.spillMemoryIteratorToDisk()
  • 创建blockId : temp_shuffle_ + UUID
  • 溢出到磁盘临时文件: temp_shuffle_ + UUID
  • 遍历内存数据inMemoryIterator写入到磁盘临时文件spillFile
  • 遍历内存中的数据写入到临时文件,会记录每个临时文件中每个分区的(key,value)各有多少个,elementsPerPartition(partitionId) 如果说数据很大的话,会每默认每10000条数据进行Flush()一次数据到文件中,会记录每一次Flush的数据大小batchSizes入到ArrayBuffer中保存
/** * Spill contents of in-memory iterator to a temporary file on disk. */ private[this] def spillMemoryIteratorToDisk(inMemoryIterator: WritablePartitionedIterator) : SpilledFile = { // Because these files may be read during shuffle, their compression must be controlled by // spark.shuffle.compress instead of spark.shuffle.spill.compress, so we need to use // createTempShuffleBlock here; see SPARK-3426 for more context. val (blockId, file) = diskBlockManager.createTempShuffleBlock() // These variables are reset after each flush var objectsWritten: Long = 0 var spillMetrics: ShuffleWriteMetrics = null var writer: DiskBlockObjectWriter = null def openWriter(): Unit = { assert (writer == null && spillMetrics == null) spillMetrics = new ShuffleWriteMetrics writer = blockManager.getDiskWriter(blockId, file, serInstance, fileBufferSize, spillMetrics) } openWriter() // List of batch sizes (bytes) in the order they are written to disk val batchSizes = new ArrayBuffer[Long] // How many elements we have in each partition val elementsPerPartition = new Array[Long](numPartitions) // Flush the disk writer's contents to disk, and update relevant variables. // The writer is closed at the end of this process, and cannot be reused. def flush(): Unit = { val w = writer writer = null w.commitAndClose() _diskBytesSpilled += spillMetrics.shuffleBytesWritten batchSizes.append(spillMetrics.shuffleBytesWritten) spillMetrics = null objectsWritten = 0 } var success = false try { while (inMemoryIterator.hasNext) { val partitionId = inMemoryIterator.nextPartition() require(partitionId >= 0 && partitionId < numPartitions, s"partition Id: ${partitionId} should be in the range [0, ${numPartitions})") inMemoryIterator.writeNext(writer) elementsPerPartition(partitionId) += 1 objectsWritten += 1 if (objectsWritten == serializerBatchSize) { flush() openWriter() } } if (objectsWritten > 0) { flush() } else if (writer != null) { val w = writer writer = null w.revertPartialWritesAndClose() } success = true } finally { if (!success) { // This code path only happens if an exception was thrown above before we set success; // close our stuff and let the exception be thrown further if (writer != null) { writer.revertPartialWritesAndClose() } if (file.exists()) { if (!file.delete()) { logWarning(s"Error deleting ${file}") } } } } SpilledFile(file, blockId, batchSizes.toArray, elementsPerPartition) } 

源码分析(内存数据Spill合并)

SortShuffleWriter.insertAll

  • 即内存中的数据,如果有溢出,写入到临时文件后,可能会有多个临时文件(看数据的大小)

  • 这时要开始从所有的临时文件中,shuffle出按给reduce输入数据(partition,Iterator),相当于要对多个临时文件进行合成一个文件,合成的结果按partition升序排序,再按Key升序排序

  • SortShuffleWriter.write

  • 得到合成文件shuffleBlockResolver.getDataFile : 格式如 "shuffle_" + shuffleId + "" + mapId + "" + reduceId + ".data" + "." + UUID,reduceId为默认的0

  • 调用关键方法ExternalSorter的sorter.writePartitionedFile,这才是真正合成文件的方法

  • 返回值partitionLengths,即为数据文件中对应索引文件按分区从0到最大分区,每个分区的数据大小的数组

 /** Write a bunch of records to this task's output */ override def write(records: Iterator[Product2[K, V]]): Unit = { sorter = if (dep.mapSideCombine) { require(dep.aggregator.isDefined, "Map-side combine without Aggregator specified!") new ExternalSorter[K, V, C]( context, dep.aggregator, Some(dep.partitioner), dep.keyOrdering, dep.serializer) } else { // In this case we pass neither an aggregator nor an ordering to the sorter, because we don't // care whether the keys get sorted in each partition; that will be done on the reduce side // if the operation being run is sortByKey. new ExternalSorter[K, V, V]( context, aggregator = None, Some(dep.partitioner), ordering = None, dep.serializer) } sorter.insertAll(records) // Don't bother including the time to open the merged output file in the shuffle write time, // because it just opens a single file, so is typically too fast to measure accurately // (see SPARK-3570). val output = shuffleBlockResolver.getDataFile(dep.shuffleId, mapId) val tmp = Utils.tempFileWith(output) try { val blockId = ShuffleBlockId(dep.shuffleId, mapId, IndexShuffleBlockResolver.NOOP_REDUCE_ID) val partitionLengths = sorter.writePartitionedFile(blockId, tmp) shuffleBlockResolver.writeIndexFileAndCommit(dep.shuffleId, mapId, partitionLengths, tmp) mapStatus = MapStatus(blockManager.shuffleServerId, partitionLengths) } finally { if (tmp.exists() && !tmp.delete()) { logError(s"Error while deleting temp file ${tmp.getAbsolutePath}") } } } 
  • ExternalSorter.writePartitionedFile
  • 按方法名直译,把数据写入已分区的文件中
  • 如果没有spill文件,直接按ExternalSorter在内存中排序,用的是TimSort排序算法排序,单独合出来讲,这里不详细讲
  • 如果有spill文件,是我们重点分析的,这个时候,调用this.partitionedIterator按回按[(partition,Iterator)],按分区升序排序,按(key,value)中key升序排序的数据,并键中方法this.partitionedIterator()
  • 写入合并文件中,并返回写入合并文件中每个分区的长度,放到lengths数组中,数组索引就是partition
/** * Write all the data added into this ExternalSorter into a file in the disk store. This is * called by the SortShuffleWriter. * * @param blockId block ID to write to. The index file will be blockId.name + ".index". * @return array of lengths, in bytes, of each partition of the file (used by map output tracker) */ def writePartitionedFile( blockId: BlockId, outputFile: File): Array[Long] = { // Track location of each range in the output file val lengths = new Array[Long](numPartitions) if (spills.isEmpty) { // Case where we only have in-memory data val collection = if (aggregator.isDefined) map else buffer val it = collection.destructiveSortedWritablePartitionedIterator(comparator) while (it.hasNext) { val writer = blockManager.getDiskWriter(blockId, outputFile, serInstance, fileBufferSize, context.taskMetrics.shuffleWriteMetrics.get) val partitionId = it.nextPartition() while (it.hasNext && it.nextPartition() == partitionId) { it.writeNext(writer) } writer.commitAndClose() val segment = writer.fileSegment() lengths(partitionId) = segment.length } } else { // We must perform merge-sort; get an iterator by partition and write everything directly. for ((id, elements) <- this.partitionedIterator) { if (elements.hasNext) { val writer = blockManager.getDiskWriter(blockId, outputFile, serInstance, fileBufferSize, context.taskMetrics.shuffleWriteMetrics.get) for (elem <- elements) { writer.write(elem._1, elem._2) } writer.commitAndClose() val segment = writer.fileSegment() lengths(id) = segment.length } } } context.taskMetrics().incMemoryBytesSpilled(memoryBytesSpilled) context.taskMetrics().incDiskBytesSpilled(diskBytesSpilled) context.internalMetricsToAccumulators( InternalAccumulator.PEAK_EXECUTION_MEMORY).add(peakMemoryUsedBytes) lengths } 
  • this.partitionedIterator()
  • 直接调用ExternalSorter.merge()方法
  • 临时文件参数spills
  • 内存文件排序算法在这里调用collection.partitionedDestructiveSortedIterator(comparator),实际调的是PartitionedAppendOnlyMap.partitionedDestructiveSortedIterator,定义了排序算法partitionKeyComparator,即按partition升序排序,再按key升序排序
/** * Return an iterator over all the data written to this object, grouped by partition and * aggregated by the requested aggregator. For each partition we then have an iterator over its * contents, and these are expected to be accessed in order (you can't "skip ahead" to one * partition without reading the previous one). Guaranteed to return a key-value pair for each * partition, in order of partition ID. * * For now, we just merge all the spilled files in once pass, but this can be modified to * support hierarchical merging. * Exposed for testing. */ def partitionedIterator: Iterator[(Int, Iterator[Product2[K, C]])] = { val usingMap = aggregator.isDefined val collection: WritablePartitionedPairCollection[K, C] = if (usingMap) map else buffer if (spills.isEmpty) { // Special case: if we have only in-memory data, we don't need to merge streams, and perhaps // we don't even need to sort by anything other than partition ID if (!ordering.isDefined) { // The user hasn't requested sorted keys, so only sort by partition ID, not key groupByPartition(destructiveIterator(collection.partitionedDestructiveSortedIterator(None))) } else { // We do need to sort by both partition ID and key groupByPartition(destructiveIterator( collection.partitionedDestructiveSortedIterator(Some(keyComparator)))) } } else { // Merge spilled and in-memory data merge(spills, destructiveIterator( collection.partitionedDestructiveSortedIterator(comparator))) } } 
  • ExternalSorter.merge()方法
  • 0 until numPartitions 从0到numPartitions(不包含)分区循环调用
  • IteratorForPartition(p, inMemBuffered),每次取内存中的p分区的数据
  • readers是每个分区是读所有的临时文件(因为每份临时文件,都有可能包含p分区的数据),
  • readers.map(_.readNextPartition())该方法内部用的是每次调一个分区的数据,从0开始,刚好对应的是p分区的数据
  • readNextPartition方法即调用SpillReader.readNextPartition()方法
  • 对p分区的数据进行mergeWithAggregation合并后,再写入到合并文件中
 /** * Merge a sequence of sorted files, giving an iterator over partitions and then over elements * inside each partition. This can be used to either write out a new file or return data to * the user. * * Returns an iterator over all the data written to this object, grouped by partition. For each * partition we then have an iterator over its contents, and these are expected to be accessed * in order (you can't "skip ahead" to one partition without reading the previous one). * Guaranteed to return a key-value pair for each partition, in order of partition ID. */ private def merge(spills: Seq[SpilledFile], inMemory: Iterator[((Int, K), C)]) : Iterator[(Int, Iterator[Product2[K, C]])] = { val readers = spills.map(new SpillReader(_)) val inMemBuffered = inMemory.buffered (0 until numPartitions).iterator.map { p => val inMemIterator = new IteratorForPartition(p, inMemBuffered) val iterators = readers.map(_.readNextPartition()) ++ Seq(inMemIterator) if (aggregator.isDefined) { // Perform partial aggregation across partitions (p, mergeWithAggregation( iterators, aggregator.get.mergeCombiners, keyComparator, ordering.isDefined)) } else if (ordering.isDefined) { // No aggregator given, but we have an ordering (e.g. used by reduce tasks in sortByKey); // sort the elements without trying to merge them (p, mergeSort(iterators, ordering.get)) } else { (p, iterators.iterator.flatten) } } } 
  • SpillReader.readNextPartition()
  • readNextItem()是真正读数临时文件的方法,
  • deserializeStream每次读取一个流大小,这个大小时在spill输出文件时写到batchSizes中的,某个是每个分区写一次流,如果分区中的数据很大,就按10000条数据进行一次流,这样每满10000次就再读一次流,这样就可以把当前分区里边的多少提交流全部读完
  • 一进来就执行nextBatchStream()方法,该方法是按数组batchSizes存储着每次写入流时的数据大小
  • val batchOffsets = spill.serializerBatchSizes.scanLeft(0L)(_ + _)这个其实取到的值,就刚好是每次流的一位置偏移量,后面的偏移量,刚好是前面所有偏移量之和
  • 当前分区的流读完时,就为空,就相当于当前分区的数据全部读完了
  • 当partitionId=numPartitions,finished= true说明所有分区的所有文件全部读完了
def readNextPartition(): Iterator[Product2[K, C]] = new Iterator[Product2[K, C]] { val myPartition = nextPartitionToRead nextPartitionToRead += 1 override def hasNext: Boolean = { if (nextItem == null) { nextItem = readNextItem() if (nextItem == null) { return false } } assert(lastPartitionId >= myPartition) // Check that we're still in the right partition; note that readNextItem will have returned // null at EOF above so we would've returned false there lastPartitionId == myPartition } override def next(): Product2[K, C] = { if (!hasNext) { throw new NoSuchElementException } val item = nextItem nextItem = null item } } 
 /** * Return the next (K, C) pair from the deserialization stream and update partitionId, * indexInPartition, indexInBatch and such to match its location. * * If the current batch is drained, construct a stream for the next batch and read from it. * If no more pairs are left, return null. */ private def readNextItem(): (K, C) = { if (finished || deserializeStream == null) { return null } val k = deserializeStream.readKey().asInstanceOf[K] val c = deserializeStream.readValue().asInstanceOf[C] lastPartitionId = partitionId // Start reading the next batch if we're done with this one indexInBatch += 1 if (indexInBatch == serializerBatchSize) { indexInBatch = 0 deserializeStream = nextBatchStream() } // Update the partition location of the element we're reading indexInPartition += 1 skipToNextPartition() // If we've finished reading the last partition, remember that we're done if (partitionId == numPartitions) { finished = true if (deserializeStream != null) { deserializeStream.close() } } (k, c) } 
 /** Construct a stream that only reads from the next batch */ def nextBatchStream(): DeserializationStream = { // Note that batchOffsets.length = numBatches + 1 since we did a scan above; check whether // we're still in a valid batch. if (batchId < batchOffsets.length - 1) { if (deserializeStream != null) { deserializeStream.close() fileStream.close() deserializeStream = null fileStream = null } val start = batchOffsets(batchId) fileStream = new FileInputStream(spill.file) fileStream.getChannel.position(start) batchId += 1 val end = batchOffsets(batchId) assert(end >= start, "start = " + start + ", end = " + end + ", batchOffsets = " + batchOffsets.mkString("[", ", ", "]")) val bufferedStream = new BufferedInputStream(ByteStreams.limit(fileStream, end - start)) val sparkConf = SparkEnv.get.conf val stream = blockManager.wrapForCompression(spill.blockId, CryptoStreamUtils.wrapForEncryption(bufferedStream, sparkConf)) serInstance.deserializeStream(stream) } else { // No more batches left cleanup() null } } 

end

end

原文链接:https://my.oschina.net/u/723009/blog/2988340
关注公众号

低调大师中文资讯倾力打造互联网数据资讯、行业资源、电子商务、移动互联网、网络营销平台。

持续更新报道IT业界、互联网、市场资讯、驱动更新,是最及时权威的产业资讯及硬件资讯报道平台。

转载内容版权归作者及来源网站所有,本站原创内容转载请注明来源。

文章评论

共有0条评论来说两句吧...

文章二维码

扫描即可查看该文章

点击排行

推荐阅读

最新文章