类脑计算:让人工智能走得更远
像人一样思考,这是人们对人工智能和机器人的期待。大踏步前进的人工智能,似乎走到了十字路口。
“机器综合智能水平和人脑相差较大,机器学习需要较多人工干预,不同人工智能模态之间交互协同较少……”近日,在香港召开的第S43次香山科学会议上,与会科学家细数当前人工智能发展面临的瓶颈。
解铃还须系铃人,人工智能的发展也不例外。科学家意识到,想要走得更远,人工智能还要回到出发的地方,那便是人类智能。
丨神经科学提供基础
“以深度学习为代表的机器学习方法在视听觉感知等具体问题上媲美甚至超越人类的水平。”会议报告中,作为一名神经科学家,中科院神经科学所研究员蒲慕明院士为人工智能在过去几十年的发展点赞。不过,他同时看到,与人脑的学习能力相比,机器学习在可解释性、推理能力、举一反三能力等方面存在明显差距。
让机器向人学习,是提升“智能”水平的重要方向。会议执行主席、香港科技大学副校长叶玉如院士指出:“目标是在多个层面,理论上模拟大脑的机制和结构,开发一个更具有普遍性的AI以应对包括多任务、自学习和自适应等方面的挑战。”
“受脑启发”是人工智能最重要的发展方向。近年来,脑科学研究正在从传统的认识脑、了解脑向保护脑再向增强脑、影响脑的过程发展,即完成从“读脑”到“脑控”再到“控脑”的转换。学习大脑的信息处理机制,建立更强大和更通用的机器智能是非常有前景的。通过多学科交叉和实验研究获得的人脑工作机制更具可靠性,有望为人工智能未来发展提供基础。
另一方面,人工智能可以对神经学和脑科学在数据收集、标注和建模等方面提供技术支持促进脑科学的发展。
丨打破“冯·诺依曼架构”
面向通用的人工智能离不开类脑计算芯片。清华大学精密仪器系教授、类脑计算中心主任施路平表示:“作为一种借鉴人脑存储处理信息方式发展起来的新技术,类脑计算将是人工通用智能的基石。”
打破“冯·诺依曼架构”成为借鉴人脑信息处理方式的重要途径。据了解,在“冯·诺依曼架构”中,计算模块和存储单元互相分离,CPU在执行命令时必须先从存储单元中读取数据。每一项任务,如果有十个步骤,那么CPU会依次进行十次读取、执行,再读取、再执行,时间和功耗都花费在数据读取上,限制了数据处理能力。这与大脑处理大量外界信息却能耗极低的现象大相径庭。
类脑计算有望把类似大脑的突触做到芯片上。今年5月,北京大学计算机科学技术系教授黄铁军课题组联合多家单位实现了灵长类视网膜中央凹神经细胞和神经环路的精细建模,提出了模拟视网膜机理的脉冲编码模型,研制成功仿视网膜芯片。
“视网膜超速全时视觉芯片像生物视网膜一样采用神经脉冲表达视觉信息,脉冲发放频率‘超速’人眼百倍,能够‘看清’高速旋转叶片的文字,‘全时’是指从芯片采集的神经脉冲序列中重构出任意时刻的画面。”黄铁军介绍说,“这是实现真正机器视觉的基础,有望重塑视觉信息处理体系,为无人驾驶、机器人、视频监控等领域带来变革。”
不过,神经突触芯片还在实验室阶段,尚未走向实用。与会专家认为,类脑计算是一场令人兴奋又望而生畏的艰难挑战。
丨尚存三大隐忧
《中国AI发展报告2018》显示,自2013年以来,全球和中国人工智能行业投融资规模都呈上涨趋势。与会专家注意到,目前国内跟人工智能有关的公司有4000多家,但是能够得到投资人青睐或关注、愿意投资的公司,却不到三分之一。过度依赖国外现成源代码、商业应用路径不明确及专业人才稀缺是当前人工智能企业的三大隐忧。
自2015年以来,谷歌、脸书、亚马逊等纷纷发布机器学习的开源软件,导致我国企业采用大量现成的源代码。在科学家看来,这仿佛在起跑线上丧失优势,工艺再精深也是在别人的体系中做零部件的更新改造。对此,应重点突破基础领域,针对人工智能底层技术,加强对以深度学习为代表的底层算法模型的深入研究。
而对于商业应用路径不明确,专家建议企业不要太盲目,应尽快找准发力方向,AI项目商业应用场景能否落地是其成败的关键,快速积累核心技术优势,打造商业模式,才能做出真正有市场需求的产品。同时,应坚持实事求是的发展路线,避免人工智能热潮演变成一次“大跃进”,透支研究和实业资本资源。

低调大师中文资讯倾力打造互联网数据资讯、行业资源、电子商务、移动互联网、网络营销平台。
持续更新报道IT业界、互联网、市场资讯、驱动更新,是最及时权威的产业资讯及硬件资讯报道平台。
转载内容版权归作者及来源网站所有,本站原创内容转载请注明来源。
- 上一篇
音视频技术开发周刊 66期
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/vn9PLgZvnPs1522s82g/article/details/82670671 『音视频技术开发周刊』由LiveVideoStack团队出品,专注在音视频技术领域,纵览相关技术领域的干货和新闻投稿,每周一期。点击『阅读原文』,浏览第66期内容,祝您阅读愉快。 架构 使用WebRTC和WebVR进行VR视频通话 本文来自Google的开发专家Dan Jenkins,他喜欢将最新的Web API与RTC应用程序混合在一起。他还在Nimble Ape经营自己的咨询和开发公司。本文中,他给出了一个代码实现——通过使用WebVR将FreeSWITCH Verto WebRTC视频会议转换为虚拟现实会议的。LiveVideoStack对原文进行了摘译。 吉长江:基于学习的视频植入技术是未来趋势 本文来自影谱科技创新研发中心负责人吉长江在8月举行的LiveVideoStack Meet武汉站的分享,并由LiveVideoStack整理而成。吉长江详细介绍了视频植入的流程、典型方法、难点及技术趋...
- 下一篇
透彻理解Spring事务设计思想之手写实现
事务,是描述一组操作的抽象,比如对数据库的一组操作,要么全部成功,要么全部失败。事务具有4个特性:Atomicity(原子性),Consistency(一致性),Isolation(隔离性),Durability(持久性)。在实际开发中,我们对事务应用最多就是在数据库操作这一环,特别是Spring对数据库事务进行了封装管理。Spring对事务的支持,确实很强大,但是从本质上来讲:事务是否生效取决数据库底层是否支持(比如MySQL的MyISAM引擎就不支持事务,Spring能奈何!),同时一个事务的多个操作需要在同一个Connection上。事务也往往是在业务逻辑层来控制。本篇博客将通过手写一个Demo来分析Spring事务底层到底是如何帮助我们轻松完成事务管理的! 透彻理解Spring事务设计思想之手写实现 先来看一眼工程结构: 工程结构 ConnectionHolder ConnectionHolder 在Spring中,有时候我们是不是要配置多个数据源DataSource?很显然,Spring需要通过DataSource来得到操作数据库的管道Connection,这有点类似于JND...
相关文章
文章评论
共有0条评论来说两句吧...
文章二维码
点击排行
推荐阅读
最新文章
- Linux系统CentOS6、CentOS7手动修改IP地址
- CentOS7设置SWAP分区,小内存服务器的救世主
- Docker安装Oracle12C,快速搭建Oracle学习环境
- CentOS6,7,8上安装Nginx,支持https2.0的开启
- SpringBoot2初体验,简单认识spring boot2并且搭建基础工程
- Hadoop3单机部署,实现最简伪集群
- Springboot2将连接池hikari替换为druid,体验最强大的数据库连接池
- Docker使用Oracle官方镜像安装(12C,18C,19C)
- CentOS8,CentOS7,CentOS6编译安装Redis5.0.7
- SpringBoot2整合Redis,开启缓存,提高访问速度