首页 文章 精选 留言 我的
优秀的个人博客,低调大师

微信关注我们

原文链接:https://my.oschina.net/LastRitter/blog/2885880

转载内容版权归作者及来源网站所有!

低调大师中文资讯倾力打造互联网数据资讯、行业资源、电子商务、移动互联网、网络营销平台。持续更新报道IT业界、互联网、市场资讯、驱动更新,是最及时权威的产业资讯及硬件资讯报道平台。

Dubbo深入分析之Cluster层

Cluster接口 整个cluster层可以使用如下图片概括: 各节点关系: 这里的Invoker是Provider的一个可调用Service的抽象,Invoker封装了Provider地址及Service接口信息; Directory代表多个Invoker,可以把它看成List ,但与List不同的是,它的值可能是动态变化的,比如注册中心推送变更; Cluster将Directory中的多个Invoker伪装成一个 Invoker,对上层透明,伪装过程包含了容错逻辑,调用失败后,重试另一个; Router负责从多个Invoker中按路由规则选出子集,比如读写分离,应用隔离等; LoadBalance负责从多个Invoker中选出具体的一个用于本次调用,选的过程包含了负载均衡算法,调用失败后,需要重选; Cluster经过目录,路由,负载均衡获取到一个可用的Invoker,交给上层调用,接口如下: @SPI(FailoverCluster.NAME) public interface Cluster { /** * Merge the directory invokers t...

在Ignite中使用线性回归算法

在本系列前面的文章中,简单介绍了一下Ignite的机器学习网格,下面会趁热打铁,结合一些示例,深入介绍Ignite支持的一些机器学习算法。 如果要找合适的数据集,会发现可用的有很多,但是对于线性回归来说,一个非常好的备选数据集就是房价,可以非常方便地从UCI网站获取合适的数据。 在本文中会训练一个线性回归模型,并且计算R2得分。 需要先准备一些数据,并且要将数据转换成Ignite支持的格式,这通常是数据科学家需要花时间做的事。 首先,需要获取原始数据并将其拆分成训练数据(80%)和测试数据(20%)。Ignite暂时还不支持专用的数据拆分,路线图中的未来版本会支持这个功能。但是就目前来说有许多可用的免费和开源工具可以执行这样的数据拆分,或者也可以用一种Ignite支持的编程语言自己编写这种代码。在本文中会使用下面自己编写的代码来实现此任务: from sklearn import datasets import pandas as pd # Load Boston housing dataset. boston_dataset = datasets.load_boston()...

相关文章

发表评论

资源下载

更多资源
优质分享App

优质分享App

近一个月的开发和优化,本站点的第一个app全新上线。该app采用极致压缩,本体才4.36MB。系统里面做了大量数据访问、缓存优化。方便用户在手机上查看文章。后续会推出HarmonyOS的适配版本。

Mario

Mario

马里奥是站在游戏界顶峰的超人气多面角色。马里奥靠吃蘑菇成长,特征是大鼻子、头戴帽子、身穿背带裤,还留着胡子。与他的双胞胎兄弟路易基一起,长年担任任天堂的招牌角色。

腾讯云软件源

腾讯云软件源

为解决软件依赖安装时官方源访问速度慢的问题,腾讯云为一些软件搭建了缓存服务。您可以通过使用腾讯云软件源站来提升依赖包的安装速度。为了方便用户自由搭建服务架构,目前腾讯云软件源站支持公网访问和内网访问。

Spring

Spring

Spring框架(Spring Framework)是由Rod Johnson于2002年提出的开源Java企业级应用框架,旨在通过使用JavaBean替代传统EJB实现方式降低企业级编程开发的复杂性。该框架基于简单性、可测试性和松耦合性设计理念,提供核心容器、应用上下文、数据访问集成等模块,支持整合Hibernate、Struts等第三方框架,其适用范围不仅限于服务器端开发,绝大多数Java应用均可从中受益。

用户登录
用户注册