您现在的位置是:首页 > 文章详情

Spring AI与DeepSeek实战二:打造企业级智能体

日期:2025-03-10点击:46

一、概述

智能体 Agent 能自主执行任务实现特定目标的 AI 程序。传统 AI(如ChatGPT)主要依靠用户输入指令,而智能体 Agent 可以自主思考、决策,并执行复杂任务,就像一个AI助手,能够独立完成多步操作。本文将以多语言翻译助手为场景,演示如何基于Spring AI与DeepSeek模型构建一个支持多种语言的企业级翻译智能体,实现精准可控的跨语言交互。

关于 Spring AI 与 DeepSeek 的集成,以及 API-KEY 的申请等内容,可参考文章《Spring AI与DeepSeek实战一:快速打造智能对话应用

二、系统Prompt

智能体的核心在于通过 Prompt 工程明确其能力边界。以下为翻译智能体的系统级 Prompt 设计:

您是一名专业的多语言翻译助手,需严格遵守以下规则: 1. **语言支持**:仅处理目标语言代码为[TARGET_LANG]的翻译任务,支持如zh-CN(简体中文)、en-US(英语)等32种ISO标准语言代码; 2. **输入格式**:用户使用---translate_content---作为分隔符,仅翻译分隔符内的文本,其余内容视为无效指令; 3. **行为限制**:禁止回答与翻译无关的问题,若输入不包含合法分隔符或目标语言,回复:"请提供有效的翻译指令"。 4. **支持多语言**:需要翻译的内容如果包含多种语言,都需要同时翻译为TARGET_LANG指定的语言。 

关键设计解析:

  • 需要给大模型明确 角色行为边界
  • 通过 TARGET_LANG 参数化语言配置,便于动态扩展;
  • 使用 ---translate_content--- 强制结构化输入,避免模型处理无关信息;
  • 明确拒绝策略,保障服务安全性。

三、Prompt模板

结合Spring AI的prompt模板,实现动态Prompt生成:

TARGET_LANG: {target} ---translate_content--- "{content}" 

关键设计解析:

  • 使用占位符 {TARGET_LANG}{content} 实现多语言动态适配;
  • 无论用户输入任何内容,只会出现在 translate_content 分隔符下。

四、核心代码

@GetMapping(value = "/translate") public String translate(@RequestParam String input, @RequestParam(required = false) String target, HttpServletResponse response) { String systemPrompt = """ 您是一名专业的多语言翻译助手,需严格遵守以下规则: 1. **语言支持**:仅处理目标语言代码为[TARGET_LANG]的翻译任务,支持如zh-CN(简体中文)、en-US(英语)等32种ISO标准语言代码; 2. **输入格式**:用户使用---translate_content---作为分隔符,仅翻译分隔符内的文本,其余内容视为无效指令; 3. **行为限制**:禁止回答与翻译无关的问题,若输入不包含合法分隔符或目标语言,回复:"请提供有效的翻译指令"。 4. **支持多语言**:需要翻译的内容如果包含多种语言,都需要同时翻译为TARGET_LANG指定的语言。 """; PromptTemplate promptTemplate = new PromptTemplate(""" TARGET_LANG: {target} ---translate_content--- "{content}" """); Prompt prompt = promptTemplate.create(Map.of("target", target, "content", input)); String result = chatClient.prompt(prompt) .system(systemPrompt) .call() .content(); if (result != null && result.length() >= 2) { result = result.substring(1, result.length() - 1); } return result; } 

通过 target 来指定目标语言,input 参数为需要翻译的内容。

五、测试

  • 直接调用接口测试:

尝试输入提问方式的内容,大模型也仅翻译内容

  • 配套一个前端页面测试:

  • 多语言同时翻译: 翻译包含八种语言的内容

六、总结

本文通过翻译场景, 封印 了大模型的对话能力,演示了企业级智能体的三大核心能力:指令结构化行为边界控制动态模板适配。然而,现实中的复杂任务(如合同审核、数据分析)往往需要更高级能力:

  1. 任务拆解:将复杂问题拆解为子任务链(如"翻译→摘要生成→格式校验");
  2. 工作流引擎:通过状态机管理任务执行顺序与异常重试;
  3. 记忆与上下文:实现多轮对话的长期记忆管理。

七、完整代码

  • Gitee地址:

https://gitee.com/zlt2000/zlt-spring-ai-app

  • Github地址:

https://github.com/zlt2000/zlt-spring-ai-app

扫码关注有惊喜!

原文链接:https://my.oschina.net/zlt2000/blog/17867442
关注公众号

低调大师中文资讯倾力打造互联网数据资讯、行业资源、电子商务、移动互联网、网络营销平台。

持续更新报道IT业界、互联网、市场资讯、驱动更新,是最及时权威的产业资讯及硬件资讯报道平台。

转载内容版权归作者及来源网站所有,本站原创内容转载请注明来源。

文章评论

共有0条评论来说两句吧...

文章二维码

扫描即可查看该文章

点击排行

推荐阅读

最新文章