如何使用Python和Plotly绘制3D图形
本文分享自华为云社区《Plotly绘制3D图形》 ,作者:柠檬味拥抱。
在数据可视化领域,三维图形是一种强大的工具,可以展示数据之间的复杂关系和结构。Python语言拥有丰富的数据可视化库,其中Plotly是一款流行的工具,提供了绘制高质量三维图形的功能。本文将介绍如何使用Python和Plotly来绘制各种类型的3D图形,并给出代码实例。
准备工作
首先,确保你已经安装了Plotly库。你可以使用pip命令来安装:
pip install plotly
接下来,我们将使用Plotly的plotly.graph_objects模块来创建3D图形。我们还将使用numpy库生成一些示例数据。
import plotly.graph_objects as go import numpy as np
绘制散点图
首先,我们将绘制一个简单的散点图。假设我们有一些三维数据,分别存储在x_data,y_data和z_data中。
# 生成示例数据
np.random.seed(42)
n_points = 100
x_data = np.random.rand(n_points)
y_data = np.random.rand(n_points)
z_data = np.random.rand(n_points)
# 创建散点图
fig = go.Figure(data=[go.Scatter3d(x=x_data, y=y_data, z=z_data, mode='markers')])
fig.update_layout(scene=dict(xaxis_title='X', yaxis_title='Y', zaxis_title='Z'),
title='3D Scatter Plot')
fig.show()
以上代码将生成一个简单的三维散点图,展示了随机生成的数据点在三维空间中的分布情况。
绘制曲面图
接下来,我们将绘制一个曲面图。假设我们有一个函数f(x, y),我们想要可视化它在三维空间中的表面。
# 定义函数
def f(x, y):
return np.sin(x) * np.cos(y)
# 生成网格数据
x_grid = np.linspace(0, 2*np.pi, 50)
y_grid = np.linspace(0, 2*np.pi, 50)
x_grid, y_grid = np.meshgrid(x_grid, y_grid)
z_grid = f(x_grid, y_grid)
# 创建曲面图
fig = go.Figure(data=[go.Surface(z=z_grid, x=x_grid, y=y_grid)])
fig.update_layout(scene=dict(xaxis_title='X', yaxis_title='Y', zaxis_title='Z'),
title='3D Surface Plot')
fig.show()
以上代码将生成一个展示了函数表面的三维曲面图。
绘制线框图
最后,我们将绘制一个线框图,展示数据的连续性。
# 生成线框数据
theta = np.linspace(-4*np.pi, 4*np.pi, 100)
z_line = np.linspace(-2, 2, 100)
x_line = z_line * np.sin(theta)
y_line = z_line * np.cos(theta)
# 创建线框图
fig = go.Figure(data=[go.Scatter3d(x=x_line, y=y_line, z=z_line, mode='lines')])
fig.update_layout(scene=dict(xaxis_title='X', yaxis_title='Y', zaxis_title='Z'),
title='3D Wireframe Plot')
fig.show()
以上代码将生成一个展示了线框的三维图形。
通过以上示例,我们展示了如何使用Python和Plotly来绘制各种类型的三维图形。你可以根据自己的需求进一步定制这些图形,并探索Plotly库中更多丰富的功能。Happy plotting!
绘制3D条形图
除了散点图、曲面图和线框图之外,我们还可以绘制3D条形图,展示数据之间的差异和关系。
# 生成示例数据
categories = ['A', 'B', 'C', 'D']
values = np.random.randint(1, 10, size=(len(categories), len(categories)))
x_bar, y_bar = np.meshgrid(np.arange(len(categories)), np.arange(len(categories)))
x_bar = x_bar.flatten()
y_bar = y_bar.flatten()
z_bar = np.zeros_like(x_bar)
# 设置条形图的高度
bar_heights = values.flatten()
# 创建3D条形图
fig = go.Figure(data=[go.Bar3d(x=x_bar, y=y_bar, z=z_bar, dx=1, dy=1, dz=bar_heights)])
fig.update_layout(scene=dict(xaxis_title='X', yaxis_title='Y', zaxis_title='Z'),
title='3D Bar Chart')
fig.show()
以上代码将生成一个展示了各种类别和值之间关系的三维条形图。
自定义图形样式
Plotly提供了丰富的自定义选项,可以调整图形的样式、布局和外观。你可以根据需要修改图形的颜色、线型、标签等属性,以满足特定的可视化需求。
# 自定义图形样式
fig.update_traces(marker=dict(color='rgb(255, 127, 14)', size=10),
selector=dict(mode='markers'))
fig.update_layout(scene=dict(xaxis=dict(backgroundcolor="rgb(200, 200, 230)",
gridcolor="white",
showbackground=True,
zerolinecolor="white"),
yaxis=dict(backgroundcolor="rgb(230, 200,230)",
gridcolor="white",
showbackground=True,
zerolinecolor="white"),
zaxis=dict(backgroundcolor="rgb(230, 230,200)",
gridcolor="white",
showbackground=True,
zerolinecolor="white")),
title='Customized 3D Scatter Plot')
fig.show()
交互式三维图形
Plotly还支持创建交互式的三维图形,让用户可以通过鼠标交互来探索数据。下面是一个交互式散点图的示例:
# 创建交互式散点图
fig = go.Figure(data=[go.Scatter3d(x=x_data, y=y_data, z=z_data, mode='markers')])
fig.update_layout(scene=dict(xaxis_title='X', yaxis_title='Y', zaxis_title='Z'),
title='Interactive 3D Scatter Plot')
fig.show()
通过将鼠标悬停在数据点上,用户可以查看每个数据点的具体数值,从而更深入地了解数据。
导出图形
一旦你创建了满意的三维图形,你可以将其导出为静态图片或交互式HTML文件,方便分享和展示。Plotly提供了方便的导出功能,让你可以轻松地保存图形到本地文件。
# 将图形导出为静态图片
fig.write_image("3d_plot.png")
# 将图形导出为交互式HTML文件
fig.write_html("3d_plot.html")
探索更多功能
除了本文介绍的功能之外,Plotly还提供了许多其他强大的功能,如动画、子图、相机控制等,可以进一步增强和定制你的三维图形。你可以通过查阅官方文档或参考在线教程来深入了解这些功能,并将其应用到你的项目中。
总结
通过本文,我们学习了如何使用Python和Plotly库绘制各种类型的三维图形,包括散点图、曲面图、线框图和条形图。我们了解了绘制每种图形所需的基本步骤和代码示例,并探索了如何自定义图形样式、创建交互式图形以及将图形导出为静态图片或交互式HTML文件。通过这些技巧和功能,我们可以轻松地在数据可视化领域创建出具有吸引力和实用性的三维图形,从而更好地理解和分析数据。无论是在科学研究、工程应用还是数据分析中,三维图形都是一种强大的工具,帮助我们发现数据之间的模式和关系,以及展示研究成果和洞见。通过不断探索和应用Python和Plotly库的功能,我们可以进一步提升数据可视化的效果和效率,为我们的工作和项目带来更多的价值和成就。
关注公众号
低调大师中文资讯倾力打造互联网数据资讯、行业资源、电子商务、移动互联网、网络营销平台。
持续更新报道IT业界、互联网、市场资讯、驱动更新,是最及时权威的产业资讯及硬件资讯报道平台。
转载内容版权归作者及来源网站所有,本站原创内容转载请注明来源。
-
上一篇
OpenAI 前超级对齐领导人抨击公司忽视安全治理
上周,OpenAI 超级对齐(Superalignment)团队的两位联合领导人--前首席科学家 Ilya Sutskever 和 Jan Leike 双双在数小时内宣布从公司辞职。 此后,美国《连线》杂志报道称,在两位联合负责人离职后,OpenAI 的超级对齐团队据说已经解散。 团队的一位知情人士透露,OpenAI 曾承诺超级对齐团队可以使用公司 20% 的计算资源。但事实却是,尽管他们只申请了其中一小部分计算资源,也会经常遭到拒绝,从而导致团队工作无法开展。 紧接着,Leike 在个人 X 账户上发布了一长串信息,公开阐述了辞职的一些原因。 “相当长一段时间以来,我一直与 OpenAI 领导层关于公司核心优先事项的意见存在分歧,直到我们最终达到了一个爆发点。 我认为,我们应该把更多的精力用于为下一代模型做好准备,包括安全性、监控、准备、安全、对抗鲁棒性、(超级)一致性、保密性、社会影响以及相关主题。这些问题都很难解决,我担心我们还没有步入正轨。 在过去的几个月里,我的团队一直在逆风航行。有时,我们为计算而苦苦挣扎,要完成这项至关重要的研究越来越难。” 他谴责 OpenAI 及其领导...
-
下一篇
通过HPA+CronHPA组合应对业务复杂弹性伸缩场景
本文分享自华为云社区《通过HPA+CronHPA组合应对业务复杂弹性伸缩场景》,作者:云容器大未来。 背景 在k8s集群中,容器水平自动伸缩(HPA),可以根据容器资源的使用量,在设置好的副本范围内,自动扩缩容工作负载副本数(replicas)。HPA是基于指标阈值进行伸缩的,常见的指标有CPU和内存。也可以通过自定义指标,例如QPS、连接数等进行伸缩。但是存在一种场景:基于指标的伸缩存在一定的时延,这类时延主要包含:采集时延(分钟级) 、 判断时延(分钟级) 和伸缩时延(分钟级)。此类分钟级时延,无法适应在短期内极速上涨的业务流量,可能会导致应用CPU飚高,响应时间变长。 容器定时水平自动伸缩(CronHPA)是对HPA的一种补充,对于有固定时间段高峰期的业务,可以提前将容器的实例数量扩容完毕,防止业务流量突发造成性能不足,导致业务延迟。而在业务低谷时,触发定时回收资源。 在某些业务场景下,存在突发流量的同时,又具有明显的波峰波谷,若同时配置CronHPA和HPA两种策略,可能出现如下情况:在业务高峰到来前,CronHPA定时任务提前扩容业务容器副本,而此时HPA可能会检测到资源使用...
相关文章
文章评论
共有0条评论来说两句吧...
文章二维码
点击排行
推荐阅读
最新文章
- CentOS7编译安装Cmake3.16.3,解决mysql等软件编译问题
- SpringBoot2初体验,简单认识spring boot2并且搭建基础工程
- CentOS7,CentOS8安装Elasticsearch6.8.6
- CentOS关闭SELinux安全模块
- CentOS8安装MyCat,轻松搞定数据库的读写分离、垂直分库、水平分库
- SpringBoot2编写第一个Controller,响应你的http请求并返回结果
- Docker容器配置,解决镜像无法拉取问题
- Windows10,CentOS7,CentOS8安装MongoDB4.0.16
- SpringBoot2更换Tomcat为Jetty,小型站点的福音
- CentOS8,CentOS7,CentOS6编译安装Redis5.0.7

微信收款码
支付宝收款码