Ascend C 自定义算子 Kernel Launch调用入门
本文分享自华为云社区《Ascend C 自定义算子 Kernel Launch调用入门》,作者: jackwangcumt。
1 Kernel Launch概述
根据官方说明文档的介绍,Ascend C对外开放核函数的基础调用(Kernel Launch)方式,是为了简化Ascend C 自定义算子的开发流程,提供更易用的调试调优功能。当开发者完成算子核函数的开发和Tiling实现后,即可通过AscendCL运行时接口,完成算子的调用并实现自己的推理应用;同时提供简易的kernel开发工程,开发者仅需提供kernel侧实现,基于工程框架可以快速实现Kernel Launch。本文实验前提是完成了《Ascend C 自定义PRelu算子》博文的相关算子开发工程。网址为:https://bbs.huaweicloud.com/blogs/425244 。请注意:
- 8.0.RC1.alpha002 当前版本,Kernel Launch开放式编程为试用特性,不支持应用于商用产品中。
- 8.0.RC1.alpha002 当前版本暂不支持获取用户workspace特性。
2 Kernel Launch调用方式
ACLRT_LAUNCH_KERNEL调用方式对内核调用符方式进行了功能加强,核函数的调用是异步的,调用接口的使用方法如下:
ACLRT_LAUNCH_KERNEL(kernel_name)(blockDim, stream, argument list);
- kernel_name:算子核函数的名称。
- blockDim:规定了核函数将会在几个核上执行。每个执行该核函数的核会被分配一个逻辑ID,即block_idx,可以在核函数的实现中调用GetBlockIdx来获取block_idx。
- stream,类型为aclrtStream,stream用于维护一些异步操作的执行顺序,确保按照应用程序中的代码调用顺序在Device上执行。
- argument list:参数列表,与核函数的参数列表保持一致。
为帮助开发者快速的完成算子的Kernel Launch调试,官方提供了简易的算子工程,我们可以基于该算子工程中的样例代码和工程框架进行算子开发。算子工程支持的如下:
- 该工程支持调试功能,如PRINTF功能、DumpTensor。
- 工程编译生成的应用程序,可通过msprof命令行方式采集和解析性能数据。
可以参考工程样例:https://gitee.com/ascend/samples/blob/master/operator/AddCustomSample/KernelLaunch/AddKernelInvocationTilingNeo ,其目录结构如下所示:
AddKernelInvocationNeo |-- cmake // CMake编译文件 |-- scripts | ├── gen_data.py // 输入数据和真值数据生成脚本文件 | ├── verify_result.py // 验证输出数据和真值数据是否一致的验证脚本 |-- CMakeLists.txt // CMake编译配置文件 |-- add_custom.cpp // 矢量算子kernel实现 |-- data_utils.h // 数据读入写出函数 |-- main.cpp // 主函数,调用算子的应用程序,含CPU域及NPU域调用 |-- run.sh // 编译运行算子的脚本
基于该算子工程,开发者进行算子开发的步骤如下:
- 完成算子kernel侧实现。
- 编写算子调用应用程序main.cpp。
-
编写CMake编译配置文件CMakeLists.txt。
- 根据实际需要修改输入数据和真值数据生成脚本文件gen_data.py和验证输出数据和真值数据是否一致的验证脚本verify_result.py。
- 根据实际需要修改编译运行算子的脚本run.sh并执行该脚本,完成算子的编译运行和结果验证。
3 Kernel Launch实现
在PReluSample目录下新建一个目录KernelLaunch,用于存放Kernel Launch调用方式的工程代码,我这里参考官方的https://gitee.com/ascend/samples/tree/master/operator/LeakyReluCustomSample/KernelLaunch/
LeakyReluKernelInvocation样例工程,并修改了相关参数,p_relu_custom.cpp 代码如下所示:
#include "kernel_operator.h" using namespace AscendC; constexpr int32_t BUFFER_NUM = 2; constexpr int32_t TOTAL_LENGTH = 8 * 200 * 1024; constexpr int32_t TILE_NUM = 32; constexpr float alpha = 0.002; class KernelPRelu { public: __aicore__ inline KernelPRelu() {} __aicore__ inline void Init(GM_ADDR x, GM_ADDR y, uint32_t totalLength, uint32_t tileNum, float alpha) { PRINTF("[npu debug] >>> GetBlockNum() %d", GetBlockNum()); ASSERT(GetBlockNum() != 0 && "block dim can not be zero!"); this->blockLength = totalLength / GetBlockNum(); this->tileNum = tileNum; this->alpha = static_cast<float>(alpha); ASSERT(tileNum != 0 && "tile num can not be zero!"); this->tileLength = this->blockLength / tileNum / BUFFER_NUM; // get start index for current core, core parallel xGm.SetGlobalBuffer((__gm__ float*)x + this->blockLength * GetBlockIdx(), this->blockLength); yGm.SetGlobalBuffer((__gm__ float*)y + this->blockLength * GetBlockIdx(), this->blockLength); // pipe alloc memory to queue, the unit is Bytes pipe.InitBuffer(inQueueX, BUFFER_NUM, this->tileLength * sizeof(float)); pipe.InitBuffer(outQueueY, BUFFER_NUM, this->tileLength * sizeof(float)); pipe.InitBuffer(tmpBuffer1, this->tileLength * sizeof(float)); //pipe.InitBuffer(tmpBuffer2, this->tileLength * sizeof(float)); } __aicore__ inline void Process() { // loop count need to be doubled, due to double buffer int32_t loopCount = this->tileNum * BUFFER_NUM; // tiling strategy, pipeline parallel for (int32_t i = 0; i < loopCount; i++) { CopyIn(i); Compute(i); CopyOut(i); } } private: __aicore__ inline void CopyIn(int32_t progress) { // alloc tensor from queue memory LocalTensor<float> xLocal = inQueueX.AllocTensor<float>(); // copy progress_th tile from global tensor to local tensor DataCopy(xLocal, xGm[progress * this->tileLength], this->tileLength); // enque input tensors to VECIN queue inQueueX.EnQue(xLocal); } __aicore__ inline void Compute(int32_t progress) { // deque input tensors from VECIN queue LocalTensor<float> xLocal = inQueueX.DeQue<float>(); LocalTensor<float> yLocal = outQueueY.AllocTensor<float>(); LocalTensor<float> tmpTensor1 = tmpBuffer1.Get<float>(); float inputVal = 0.0; Maxs(tmpTensor1, xLocal, inputVal, this->tileLength); // x >= 0 --> x // x < 0 Mins(xLocal, xLocal, inputVal, this->tileLength); Muls(xLocal, xLocal, this->alpha, this->tileLength); Add(yLocal, xLocal, tmpTensor1, this->tileLength); outQueueY.EnQue<float>(yLocal); // free input tensors for reuse inQueueX.FreeTensor(xLocal); } __aicore__ inline void CopyOut(int32_t progress) { // deque output tensor from VECOUT queue LocalTensor<float> yLocal = outQueueY.DeQue<float>(); // copy progress_th tile from local tensor to global tensor DataCopy(yGm[progress * this->tileLength], yLocal, this->tileLength); // free output tensor for reuse outQueueY.FreeTensor(yLocal); } private: TPipe pipe; TBuf<QuePosition::VECCALC> tmpBuffer1; //TBuf<QuePosition::VECCALC> tmpBuffer1, tmpBuffer2; // create queues for input, in this case depth is equal to buffer num TQue<QuePosition::VECIN, BUFFER_NUM> inQueueX; // create queue for output, in this case depth is equal to buffer num TQue<QuePosition::VECOUT, BUFFER_NUM> outQueueY; GlobalTensor<float> xGm, yGm; uint32_t blockLength; uint32_t tileNum; uint32_t tileLength; float alpha; }; extern "C" __global__ __aicore__ void p_relu_custom(GM_ADDR x, GM_ADDR y) { //GET_TILING_DATA(tiling_data, tiling); // TODO: user kernel impl KernelPRelu op; op.Init(x, y, TOTAL_LENGTH, TILE_NUM, alpha); op.Process(); } #ifndef __CCE_KT_TEST__ // call of kernel function void p_relu_custom_do(uint32_t blockDim, void* l2ctrl, void* stream, uint8_t* x, uint8_t* y) { p_relu_custom<<<blockDim, l2ctrl, stream>>>(x, y); } #endif
main.cpp 代码如下所示 :
/* * Copyright (c) Huawei Technologies Co., Ltd. 2022-2023. All rights reserved. * This file constains code of cpu debug and npu code.We read data from bin file * and write result to file. */ #include "data_utils.h" #ifndef __CCE_KT_TEST__ #include "acl/acl.h" extern void p_relu_custom_do(uint32_t coreDim, void* l2ctrl, void* stream, uint8_t* x, uint8_t* y); #else #include "tikicpulib.h" extern "C" __global__ __aicore__ void p_relu_custom(GM_ADDR x, GM_ADDR y); #endif int32_t main(int32_t argc, char* argv[]) { uint32_t blockDim = 8; size_t inputByteSize = 8 * 200 * 1024 * sizeof(float); size_t outputByteSize = 8 * 200 * 1024 * sizeof(float); #ifdef __CCE_KT_TEST__ // CPU uint8_t* x = (uint8_t*)AscendC::GmAlloc(inputByteSize); uint8_t* y = (uint8_t*)AscendC::GmAlloc(outputByteSize); printf("[cpu debug]>>> inputByteSize: %d\n", inputByteSize); ReadFile("./input/input_x.bin", inputByteSize, x, inputByteSize); AscendC::SetKernelMode(KernelMode::AIV_MODE); ICPU_RUN_KF(p_relu_custom, blockDim, x, y); // use this macro for cpu debug WriteFile("./output/output_y.bin", y, outputByteSize); AscendC::GmFree((void *)x); AscendC::GmFree((void *)y); #else // NPU //CHECK_ACL(aclInit(nullptr)); CHECK_ACL(aclInit("./acl.json")); aclrtContext context; int32_t deviceId = 0; CHECK_ACL(aclrtSetDevice(deviceId)); CHECK_ACL(aclrtCreateContext(&context, deviceId)); aclrtStream stream = nullptr; CHECK_ACL(aclrtCreateStream(&stream)); uint8_t *xHost, *yHost; uint8_t *xDevice, *yDevice; CHECK_ACL(aclrtMallocHost((void**)(&xHost), inputByteSize)); CHECK_ACL(aclrtMallocHost((void**)(&yHost), outputByteSize)); CHECK_ACL(aclrtMalloc((void**)&xDevice, inputByteSize, ACL_MEM_MALLOC_HUGE_FIRST)); CHECK_ACL(aclrtMalloc((void**)&yDevice, outputByteSize, ACL_MEM_MALLOC_HUGE_FIRST)); ReadFile("./input/input_x.bin", inputByteSize, xHost, inputByteSize); CHECK_ACL(aclrtMemcpy(xDevice, inputByteSize, xHost, inputByteSize, ACL_MEMCPY_HOST_TO_DEVICE)); p_relu_custom_do(blockDim, nullptr, stream, xDevice, yDevice); CHECK_ACL(aclrtSynchronizeStream(stream)); CHECK_ACL(aclrtMemcpy(yHost, outputByteSize, yDevice, outputByteSize, ACL_MEMCPY_DEVICE_TO_HOST)); WriteFile("./output/output_y.bin", yHost, outputByteSize); CHECK_ACL(aclrtFree(xDevice)); CHECK_ACL(aclrtFree(yDevice)); CHECK_ACL(aclrtFreeHost(xHost)); CHECK_ACL(aclrtFreeHost(yHost)); CHECK_ACL(aclrtDestroyStream(stream)); CHECK_ACL(aclrtDestroyContext(context)); CHECK_ACL(aclrtResetDevice(deviceId)); CHECK_ACL(aclFinalize()); #endif return 0; }
执行如下代码进行NPU上板调试和CPU调试:
#npu bash run.sh Ascend310P1 npu_onboard # cpu bash run.sh Ascend310P1 cpu

低调大师中文资讯倾力打造互联网数据资讯、行业资源、电子商务、移动互联网、网络营销平台。
持续更新报道IT业界、互联网、市场资讯、驱动更新,是最及时权威的产业资讯及硬件资讯报道平台。
转载内容版权归作者及来源网站所有,本站原创内容转载请注明来源。
- 上一篇
详讲openGauss 5.0 单点企业版如何部署_Centos7_x86
本文分享自华为云社区《openGauss 5.0 单点企业版部署_Centos7_x86》,本文作者:董小姐 本文档环境:CentOS7.9 x86_64 4G1C40G python2.7.5 交互式初始化环境方式 1、介绍 openGauss是一款开源关系型数据库管理系统,采用木兰宽松许可证v2发行。openGauss内核深度融合华为在数据库领域多年的经验,结合企业级场景需求,持续构建竞争力特性。 openGauss社区版本分为长期支持版本和创新版本: · 长期支持版本 (LTS) ——规模上线使用,发布间隔周期为1年,提供3年社区支持。 · 社区创新版本 (Preview) ——联创测试使用,发布间隔周期为1年,提供6个月社区支持。 openGauss支持单机部署和单机HA部署两种部署方式。单机部署时,可在一个主机部署多个数据库实例,但为了数据安全,不建议用户这样部署。单机HA部署支持一台主机和最少一台备机,备机一共最多8台的配置方式。 说明:通过openGauss提供的脚本安装时,只允许在单台物理机部署一个数据库系统。如果您需要在单台物理机部署多个数据库系统,建议您通过命令行安...
- 下一篇
KaiwuDB 数据库故障诊断工具详解
数字化时代,数据是企业最宝贵的资产之一。然而,随着数据量的增长,数据库管理的复杂性也在不断上升。数据库故障可能导致业务中断,给公司带来巨大的财务和声誉损失。在本篇博客中,我们将分享 KaiwuDB 是如何设计故障诊断工具以及具体的示例演示 01 设计思路 遵循核心原则 用户友好:即使是具有不同技能水平的用户也能轻松使用我们的工具; 全面监控:全面监控数据库系统的各个方面,包括性能指标、系统资源和查询效率; 智能诊断:利用先进的算法来识别问题的根本原因; 自动化修复:提供一键修复建议,并在可能的情况下,自动应用这些修复; 扩展性:允许用户根据他们特定的需求扩展和定制工具功能。 支持关键指标采集 为确保能够提供全面的诊断,工具将对一系列关键指标进行采集,包括但不限于: 系统配置:数据库版本、操作系统、CPU 架构和数量、内存容量、磁盘类型和容量、挂载点、文件系统类型; 部署情况:是否裸机或容器部署、数据库实例的部署模式和节点数量;数据组织:数据目录的结构、本地与集群配置、系统表和参数; 数据库统计:业务数据库数量、各库下的表数量及表结构; 列特征:数值列和枚举列的统计特征,字符串列的长度和...
相关文章
文章评论
共有0条评论来说两句吧...
文章二维码
点击排行
推荐阅读
最新文章
- SpringBoot2整合MyBatis,连接MySql数据库做增删改查操作
- Hadoop3单机部署,实现最简伪集群
- CentOS8编译安装MySQL8.0.19
- CentOS8安装Docker,最新的服务器搭配容器使用
- Docker安装Oracle12C,快速搭建Oracle学习环境
- 设置Eclipse缩进为4个空格,增强代码规范
- MySQL8.0.19开启GTID主从同步CentOS8
- SpringBoot2编写第一个Controller,响应你的http请求并返回结果
- CentOS6,CentOS7官方镜像安装Oracle11G
- CentOS6,7,8上安装Nginx,支持https2.0的开启