首页 文章 精选 留言 我的
优秀的个人博客,低调大师

微信关注我们

原文链接:https://www.oschina.net/news/257832/python-f-strings-pep-701

转载内容版权归作者及来源网站所有!

低调大师中文资讯倾力打造互联网数据资讯、行业资源、电子商务、移动互联网、网络营销平台。持续更新报道IT业界、互联网、市场资讯、驱动更新,是最及时权威的产业资讯及硬件资讯报道平台。

GPT 如何将文本拆分成 token?

在GPT模型中,tokenization(词元化)指的是将用户输入的文本分割成token(词元)的过程,以让GPT能更好地理解输入文本的词义、句法和语义,以及生成更连贯的输出内容。这是非常重要的预处理操作,对模型的最终效果有重大影响。 而tokenizer(词元生成器)是将文本切分成token的工具或组件。它将原始文本转换成模型可处理的数字形式,为GPT的生成与推理提供基础能力。 本文详细介绍了GPTtokenizer的工作原理。作者Simon Willison是开源Web应用框架Django的共同发起人,他也开源了用于探索和发布数据的工具Datasette。(以下内容由OneFlow编译,转载请联系OneFlow获得授权。来源:https://simonwillison.net/2023/Jun/8/gpt-tokenizers/) 作者|Simon Willison OneFlow编译 翻译|贾川 语言大模型(如GPT-3/4、LLaMA和PaLM)使用token作为基本单位进行工作。它们接受文本作为输入,将其转换为token(整数),然后预测接下来应该出现哪些token。 通过操...

新加坡国立大学计划推出多模态大模型 NExT-GPT

新加坡国立大学下一代搜索技术联合研究中心(NExT++)近日公布新计划——开发一款可以突破输入端多模态理解限制的大模型 NExT-GPT。 项目主页:https://next-gpt.github.io/ 论文地址:https://arxiv.org/pdf/2309.05519.pdf Demo:https://89bb30ddbe725cdcd7.gradio.live/ 研究者表示,他们将大语言模型与多模态适配器和不同的扩散解码器连接起来,使 NExT-GPT 能够感知不同的输入形式,并以文本、图像、视频和音频的任意组合方式生成输出内容。 NExT-GPT 架构: 通过利用现有训练有素的高性能编码器和解码器,NExT-GPT仅使用某些投影层的少量参数(1%)进行调整,这不仅有利于低成本训练,而且有利于将该模型扩展到更多潜在模态。 NExT++的研究者表示,他们的研究展示了建立一个能够模拟通用模态的人工智能代理的可能性。

相关文章

发表评论

资源下载

更多资源
优质分享App

优质分享App

近一个月的开发和优化,本站点的第一个app全新上线。该app采用极致压缩,本体才4.36MB。系统里面做了大量数据访问、缓存优化。方便用户在手机上查看文章。后续会推出HarmonyOS的适配版本。

腾讯云软件源

腾讯云软件源

为解决软件依赖安装时官方源访问速度慢的问题,腾讯云为一些软件搭建了缓存服务。您可以通过使用腾讯云软件源站来提升依赖包的安装速度。为了方便用户自由搭建服务架构,目前腾讯云软件源站支持公网访问和内网访问。

Nacos

Nacos

Nacos /nɑ:kəʊs/ 是 Dynamic Naming and Configuration Service 的首字母简称,一个易于构建 AI Agent 应用的动态服务发现、配置管理和AI智能体管理平台。Nacos 致力于帮助您发现、配置和管理微服务及AI智能体应用。Nacos 提供了一组简单易用的特性集,帮助您快速实现动态服务发现、服务配置、服务元数据、流量管理。Nacos 帮助您更敏捷和容易地构建、交付和管理微服务平台。

Sublime Text

Sublime Text

Sublime Text具有漂亮的用户界面和强大的功能,例如代码缩略图,Python的插件,代码段等。还可自定义键绑定,菜单和工具栏。Sublime Text 的主要功能包括:拼写检查,书签,完整的 Python API , Goto 功能,即时项目切换,多选择,多窗口等等。Sublime Text 是一个跨平台的编辑器,同时支持Windows、Linux、Mac OS X等操作系统。

用户登录
用户注册