Airtest图像识别测试工具原理解读&最佳实践 | 京东云技术团队
1 Airtest简介
Airtest是一个跨平台的、基于图像识别的UI自动化测试框架,适用于游戏和App,支持平台有Windows、Android和iOS。Airtest框架基于一种图形脚本语言Sikuli,引用该框架后,不再需要一行行的写代码,通过截取按钮或输入框的图片,用图片组成测试场景,这种方式学习成本低,简单易上手。
2 Airtest实践
APP接入流水线过程中,赛博平台只支持air脚本,因此需要对京管家APP的UI自动化脚本进行的改造。如截图可见,AirtestIDE的主界面由菜单栏、快捷工具栏和多个窗口组成,初始布局中的“设备窗口”是工具的设备连接交互区域。
air脚本生成步骤:
- 通过adb连接手机或模拟器
- 安装应用APK
- 运行应用并截图
- 模拟用户输入(点击、滑动、按键)
- 卸载应用
通过以上步骤自动生成了 .air脚本,调试过程中我们可以在IDE中运行代码,支持多行运行以及单行运行,调试通过后可在本地或服务器以命令行的方式运行脚本:
.air脚本运行方式:airtest run “path to your .air dir” —device Android
.air脚本生成报告的方式:airtest report “path to your .air dir”
3 Airtest定位方式解析
IDE的log查看窗口会时时打印脚本执行的日志,从中可以看出通过图片解析执行位置的过程。下面就以touch方法为例,解析Airtest如何通过图片获取到元素位置从而触发点击操作。
@logwrap def touch(v, times=1, **kwargs): """ Perform the touch action on the device screen :param v: target to touch, either a ``Template`` instance or absolute coordinates (x, y) :param times: how many touches to be performed :param kwargs: platform specific `kwargs`, please refer to corresponding docs :return: finial position to be clicked, e.g. (100, 100) :platforms: Android, Windows, iOS """ if isinstance(v, Template): pos = loop_find(v, timeout=ST.FIND_TIMEOUT) else: try_log_screen() pos = v for _ in range(times): G.DEVICE.touch(pos, **kwargs) time.sleep(0.05) delay_after_operation() return pos click = touch # click is alias of t
该方法通过loop_find获取坐标,然后执行点击操作 G.DEVICE.touch(pos, kwargs),接下来看loop_find如何根据模板转换为坐标。
@logwrap def loop_find(query, timeout=ST.FIND_TIMEOUT, threshold=None, interval=0.5, intervalfunc=None): """ Search for image template in the screen until timeout Args: query: image template to be found in screenshot timeout: time interval how long to look for the image template threshold: default is None interval: sleep interval before next attempt to find the image template intervalfunc: function that is executed after unsuccessful attempt to find the image template Raises: TargetNotFoundError: when image template is not found in screenshot Returns: TargetNotFoundError if image template not found, otherwise returns the position where the image template has been found in screenshot """ G.LOGGING.info("Try finding: %s", query) start_time = time.time() while True: screen = G.DEVICE.snapshot(filename=None, quality=ST.SNAPSHOT_QUALITY) if screen is None: G.LOGGING.warning("Screen is None, may be locked") else: if threshold: query.threshold = threshold match_pos = query.match_in(screen) if match_pos: try_log_screen(screen) return match_pos if intervalfunc is not None: intervalfunc() # 超时则raise,未超时则进行下次循环: if (time.time() - start_time) > timeout: try_log_screen(screen) raise TargetNotFoundError('Picture %s not found in screen' % query) else: t
首先截取手机屏幕match_pos = query.match_in(screen),然后对比传参图片与截屏来获取图片所在位置match_pos = query.match_in(screen)。接下来看match_in方法的逻辑:
def match_in(self, screen): match_result = self._cv_match(screen) G.LOGGING.debug("match result: %s", match_result) if not match_result: return None focus_pos = TargetPos().getXY(match_result, self.target_pos) return focus_pos
里面有个关键方法:match_result = self._cv_match(screen)
@logwrap def _cv_match(self, screen): # in case image file not exist in current directory: ori_image = self._imread() image = self._resize_image(ori_image, screen, ST.RESIZE_METHOD) ret = None for method in ST.CVSTRATEGY: # get function definition and execute: func = MATCHING_METHODS.get(method, None) if func is None: raise InvalidMatchingMethodError("Undefined method in CVSTRATEGY: '%s', try 'kaze'/'brisk'/'akaze'/'orb'/'surf'/'sift'/'brief' instead." % method) else: if method in ["mstpl", "gmstpl"]: ret = self._try_match(func, ori_image, screen, threshold=self.threshold, rgb=self.rgb, record_pos=self.record_pos, resolution=self.resolution, scale_max=self.scale_max, scale_step=self.scale_step) else: ret = self._try_match(func, image, screen, threshold=self.threshold, rgb=self.rgb) if ret: break return ret
首先读取图片调整图片尺寸,从而提升匹配成功率:
image = self._resize_image(ori_image, screen, ST.RESIZE_METHOD)
接下来是循环遍历匹配方法for method in ST.CVSTRATEGY。而ST.CVSTRATEGY的枚举值:
CVSTRATEGY = ["mstpl", "tpl", "surf", "brisk"] if LooseVersion(cv2.__version__) > LooseVersion('3.4.2'): CVSTRATEGY = ["mstpl", "tpl", "sift", "brisk"]
func = MATCHING_METHODS.get(method, None),func可能的取值有mstpl、tpl、surf、shift、brisk,无论哪种模式都调到了共同的方法_try_math
if method in ["mstpl", "gmstpl"]: ret = self._try_match(func, ori_image, screen, threshold=self.threshold, rgb=self.rgb, record_pos=self.record_pos, resolution=self.resolution, scale_max=self.scale_max, scale_step=self.scale_step) else: ret = self._try_match(func, image, screen, threshold=self.threshold, rgb=self.rgb)
而_try_math方法中都是调用的func的方法find_best_result()
@staticmethod def _try_match(func, *args, **kwargs): G.LOGGING.debug("try match with %s" % func.__name__) try: ret = func(*args, **kwargs).find_best_result() except aircv.NoModuleError as err: G.LOGGING.warning("'surf'/'sift'/'brief' is in opencv-contrib module. You can use 'tpl'/'kaze'/'brisk'/'akaze'/'orb' in CVSTRATEGY, or reinstall opencv with the contrib module.") return None except aircv.BaseError as err: G.LOGGING.debug(repr(err)) return None else: return ret
以TemplateMatching类的find_best_result()为例,看一下内部逻辑如何实现。
@print_run_time def find_best_result(self): """基于kaze进行图像识别,只筛选出最优区域.""" """函数功能:找到最优结果.""" # 第一步:校验图像输入 check_source_larger_than_search(self.im_source, self.im_search) # 第二步:计算模板匹配的结果矩阵res res = self._get_template_result_matrix() # 第三步:依次获取匹配结果 min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res) h, w = self.im_search.shape[:2] # 求取可信度: confidence = self._get_confidence_from_matrix(max_loc, max_val, w, h) # 求取识别位置: 目标中心 + 目标区域: middle_point, rectangle = self._get_target_rectangle(max_loc, w, h) best_match = generate_result(middle_point, rectangle, confidence) LOGGING.debug("[%s] threshold=%s, result=%s" % (self.METHOD_NAME, self.threshold, best_match)) return best_match if confidence >= self.threshold else Non
重点看第二步:计算模板匹配的结果矩阵res,res = self._get_template_result_matrix()
def _get_template_result_matrix(self): """求取模板匹配的结果矩阵.""" # 灰度识别: cv2.matchTemplate( )只能处理灰度图片参数 s_gray, i_gray = img_mat_rgb_2_gray(self.im_search), img_mat_rgb_2_gray(self.im_source) return cv2.matchTemplate(i_gray, s_gray, cv2.TM_CCOEFF_NORMED)
可以看到最终用的是openCV的方法,cv2.matchTemplate,那个优先匹配上就返回结果。
4 总结
使用过程中可以发现Airtest框架有两个缺点:一是对于背景透明的按钮或者控件,识别难度大;二是无法获取文本内容,但这一缺点可通过引入文字识别库解决,如:pytesseract。
对不能用UI控件定位的部件,使用图像识别定位还是非常方便的。UI自动化脚本编写过程中可以将几个框架结合使用,uiautomator定位速度较快,但对于flutter语言写的页面经常有一些部件无法定位,此时可以引入airtest框架用图片进行定位。每个框架都有优劣势,组合使用才能更好的实现目的。
作者:京东物流 范文君
来源:京东云开发者社区

低调大师中文资讯倾力打造互联网数据资讯、行业资源、电子商务、移动互联网、网络营销平台。
持续更新报道IT业界、互联网、市场资讯、驱动更新,是最及时权威的产业资讯及硬件资讯报道平台。
转载内容版权归作者及来源网站所有,本站原创内容转载请注明来源。
- 上一篇
手牵手带你实现mini-vue | 京东云技术团队
1 前言 随着 Vue、React、Angularjs 等框架的诞生,数据驱动视图的理念也深入人心,就 Vue 来说,它拥有着双向数据绑定、虚拟dom、组件化、视图与数据相分离等等造福程序员的优点,那 Vue 的双向数据绑定实现原理是什么样的,如果让我们自己去实现一个这样的双向数据绑定要怎么做呢,本文就与大家分享一下 Vue 的绑定原理及其简单实现 2 核心技术 大家都知道 Vue2 双向绑定是基于 ES5的 Object.defineProperty 方法+发布订阅者模式实现的 那我们首先简单了解一下这两个模块都是做什么的,在 Vue 中充当了什么角色 2.1 Object.defineProperty 用来在对象上定义或者修改一个属性值,实现数据劫持,为修改数据后去调用视图更新做准备 const obj = {} let age = 18 Object.defineProperty(obj, 'age',{ get() { return age }, set(newVal) { age = newVal + 1 }, enumerable: true }) c...
- 下一篇
细说敏捷测试-敏捷实战中的探索 | 京东云技术团队
1 什么是敏捷? 敏捷开发是一种思想或方法论,就是通过不断迭代开发和增量发布,最终交付符合用户价值的产品 敏捷思想源于最初的《敏捷宣言》: 【敏捷软件开发宣言】 个体和互动高于流程和工具; 工作的软件高于详尽的文档; 客户合作高于合同谈判; 响应变化高于遵循计划; 《敏捷宣言》代表敏捷的价值观,敏捷开发原则则帮助我们通过更灵活的方式思考开发方法和组织;具体十二条敏捷开发原则: 我们最重要的目标是通过持续不断地快速交付有价值的软件使客户满意; 欣然面对需求变化,即使在 开发后期也一样。为了客户的竞争优势,敏捷过程掌控变化。 经常地交付可工作的软件,相隔几星期或一两个月,倾向于采取较短的周期。 业务人员和开发人员必须相互合作,项目中的每一天都不例外。 激发个体的斗志,以他们为核心搭建项目。提供所需的环境和支援,辅以信任,从而达成目标。 不论团队内外,传递信息效果最好、效率最高的方式是面对面交谈。 可工作的软件是进度的首要度量标准。 敏捷过程倡导可持续开发。责任人、开发人员和用户要能够共同维持其不掉稳定、延续。 坚持不懈地追求技术卓越和良好设计,敏捷能力由此增强。 以简洁为本,它是激励减少不...
相关文章
文章评论
共有0条评论来说两句吧...
文章二维码
点击排行
推荐阅读
最新文章
- SpringBoot2整合Redis,开启缓存,提高访问速度
- Windows10,CentOS7,CentOS8安装MongoDB4.0.16
- CentOS7编译安装Gcc9.2.0,解决mysql等软件编译问题
- CentOS6,CentOS7官方镜像安装Oracle11G
- Mario游戏-低调大师作品
- SpringBoot2整合MyBatis,连接MySql数据库做增删改查操作
- CentOS8编译安装MySQL8.0.19
- Docker使用Oracle官方镜像安装(12C,18C,19C)
- Docker安装Oracle12C,快速搭建Oracle学习环境
- Docker快速安装Oracle11G,搭建oracle11g学习环境