了解 Transformers 是如何“思考”的
Transformer 模型是 AI 系统的基础。已经有了数不清的关于 "Transformer 如何工作" 的核心结构图表。
但是这些图表没有提供任何直观的计算该模型的框架表示。当研究者对于 Transformer 如何工作抱有兴趣时,直观的获取他运行的机制变得十分有用。
Thinking Like Transformers 这篇论文中提出了 transformer 类的计算框架,这个框架直接计算和模仿 Transformer 计算。使用 RASP 编程语言,使每个程序编译成一个特殊的 Transformer。
在这篇博客中,我用 Python 复现了 RASP 的变体 (RASPy)。该语言大致与原始版本相当,但是多了一些我认为很有趣的变化。通过这些语言,作者 Gail Weiss 的工作,提供了一套具有挑战性的有趣且正确的方式可以帮助了解其工作原理。
!pip install git+https://github.com/srush/RASPy
在说起语言本身前,让我们先看一个例子,看看用 Transformers 编码是什么样的。这是一些计算翻转的代码,即反向输入序列。代码本身用两个 Transformer 层应用 attention 和数学计算到达这个结果。
def flip(): length = (key(1) == query(1)).value(1) flip = (key(length - indices - 1) == query(indices)).value(tokens) return flip flip()
文章目录
- 第一部分:Transformers 作为代码
- 第二部分:用 Transformers 编写程序
Transformers 作为代码
我们的目标是定义一套计算形式来最小化 Transformers 的表达。我们将通过类比,描述每个语言构造及其在 Transformers 中的对应。(正式语言规范请在本文底部查看论文全文链接)。
这个语言的核心单元是将一个序列转换成相同长度的另一个序列的序列操作。我后面将其称之为 transforms。
输入
在一个 Transformer 中,基本层是一个模型的前馈输入。这个输入通常包含原始的 token 和位置信息。
在代码中,tokens 的特征表示最简单的 transform,它返回经过模型的 tokens,默认输入序列是 "hello":
tokens
如果我们想要改变 transform 里的输入,我们使用输入方法进行传值。
tokens.input([5, 2, 4, 5, 2, 2])
作为 Transformers,我们不能直接接受这些序列的位置。但是为了模拟位置嵌入,我们可以获取位置的索引:
indices
sop = indices sop.input("goodbye")
前馈网络
经过输入层后,我们到达了前馈网络层。在 Transformer 中,这一步可以对于序列的每一个元素独立的应用数学运算。
在代码中,我们通过在 transforms 上计算表示这一步。在每一个序列的元素中都会进行独立的数学运算。
tokens == "l"
结果是一个新的 transform,一旦重构新的输入就会按照重构方式计算:
model = tokens * 2 - 1 model.input([1, 2, 3, 5, 2])
该运算可以组合多个 Transforms,举个例子,以上述的 token 和 indices 为例,这里可以类别 Transformer 可以跟踪多个片段信息:
model = tokens - 5 + indices model.input([1, 2, 3, 5, 2])
(tokens == "l") | (indices == 1)
我们提供了一些辅助函数让写 transforms 变得更简单,举例来说,where
提供了一个类似 if
功能的结构。
where((tokens == "h") | (tokens == "l"), tokens, "q")
map
使我们可以定义自己的操作,例如一个字符串以 int
转换。(用户应谨慎使用可以使用的简单神经网络计算的操作)
atoi = tokens.map(lambda x: ord(x) - ord('0')) atoi.input("31234")
函数 (functions) 可以容易的描述这些 transforms 的级联。举例来说,下面是应用了 where 和 atoi 和加 2 的操作
def atoi(seq=tokens): return seq.map(lambda x: ord(x) - ord('0')) op = (atoi(where(tokens == "-", "0", tokens)) + 2) op.input("02-13")
注意力筛选器
到开始应用注意力机制事情就变得开始有趣起来了。这将允许序列间的不同元素进行信息交换。
我们开始定义 key 和 query 的概念,Keys 和 Queries 可以直接从上面的 transforms 创建。举个例子,如果我们想要定义一个 key 我们称作 key
。
key(tokens)
对于 query
也一样
query(tokens)
标量可以作为 key
或 query
使用,他们会广播到基础序列的长度。
query(1)
我们创建了筛选器来应用 key 和 query 之间的操作。这对应于一个二进制矩阵,指示每个 query 要关注哪个 key。与 Transformers 不同,这个注意力矩阵未加入权重。
eq = (key(tokens) == query(tokens)) eq
一些例子:
- 选择器的匹配位置偏移 1:
offset = (key(indices) == query(indices - 1)) offset
- key 早于 query 的选择器:
before = key(indices) < query(indices) before
- key 晚于 query 的选择器:
after = key(indices) > query(indices) after
选择器可以通过布尔操作合并。比如,这个选择器将 before 和 eq 做合并,我们通过在矩阵中包含一对键和值来显示这一点。
before & eq
使用注意力机制
给一个注意力选择器,我们可以提供一个序列值做聚合操作。我们通过累加那些选择器选过的真值做聚合。
(请注意:在原始论文中,他们使用一个平均聚合操作并且展示了一个巧妙的结构,其中平均聚合能够代表总和计算。RASPy 默认情况下使用累加来使其简单化并避免碎片化。实际上,这意味着 raspy 可能低估了所需要的层数。基于平均值的模型可能需要这个层数的两倍)
注意聚合操作使我们能够计算直方图之类的功能。
(key(tokens) == query(tokens)).value(1)
视觉上我们遵循图表结构,Query 在左边,Key 在上边,Value 在下面,输出在右边
一些注意力机制操作甚至不需要用到输入 token 。举例来说,去计算序列长度,我们创建一个 " select all " 的注意力筛选器并且给他赋值。
length = (key(1) == query(1)).value(1) length = length.name("length") length
这里有更多复杂的例子,下面将一步一步展示。(这有点像做采访一样)
我们想要计算一个序列的相邻值的和,首先我们向前截断:
WINDOW=3 s1 = (key(indices) >= query(indices - WINDOW + 1)) s1
然后我们向后截断:
s2 = (key(indices) <= query(indices)) s2
两者相交:
sel = s1 & s2 sel
最终聚合:
sum2 = sel.value(tokens) sum2.input([1,3,2,2,2])
这里有个可以计算累计求和的例子,我们这里引入一个给 transform 命名的能力来帮助你调试。
def cumsum(seq=tokens): x = (before | (key(indices) == query(indices))).value(seq) return x.name("cumsum") cumsum().input([3, 1, -2, 3, 1])
层
这个语言支持编译更加复杂的 transforms。他同时通过跟踪每一个运算操作计算层。
这里有个 2 层 transform 的例子,第一个对应于计算长度,第二个对应于累积总和。
x = cumsum(length - indices) x.input([3, 2, 3, 5])
用 transformers 进行编程
使用这个函数库,我们可以编写完成一个复杂任务,Gail Weiss 给过我一个极其挑战的问题来打破这个步骤:我们可以加载一个添加任意长度数字的 Transformer 吗?
例如: 给一个字符串 "19492+23919", 我们可以加载正确的输出吗?
如果你想自己尝试,我们提供了一个 版本 你可以自己试试。
挑战一:选择一个给定的索引
加载一个在索引 i
处全元素都有值的序列
def index(i, seq=tokens): x = (key(indices) == query(i)).value(seq) return x.name("index") index(1)
挑战二:转换
通过 i
位置将所有 token 移动到右侧。
def shift(i=1, default="_", seq=tokens): x = (key(indices) == query(indices-i)).value(seq, default) return x.name("shift") shift(2)
挑战三:最小化
计算序列的最小值。(这一步开始变得困难,我们版本用了 2 层注意力机制)
def minimum(seq=tokens): sel1 = before & (key(seq) == query(seq)) sel2 = key(seq) < query(seq) less = (sel1 | sel2).value(1) x = (key(less) == query(0)).value(seq) return x.name("min") minimum()([5,3,2,5,2])
挑战四:第一索引
计算有 token q 的第一索引 (2 层)
def first(q, seq=tokens): return minimum(where(seq == q, indices, 99)) first("l")
挑战五:右对齐
右对齐一个填充序列。例:"ralign().inputs('xyz___') ='—xyz'
" (2 层)
def ralign(default="-", sop=tokens): c = (key(sop) == query("_")).value(1) x = (key(indices + c) == query(indices)).value(sop, default) return x.name("ralign") ralign()("xyz__")
挑战六:分离
把一个序列在 token "v" 处分离成两部分然后右对齐 (2 层):
def split(v, i, sop=tokens): mid = (key(sop) == query(v)).value(indices) if i == 0: x = ralign("0", where(indices < mid, sop, "_")) return x else: x = where(indices > mid, sop, "0") return x split("+", 1)("xyz+zyr")
split("+", 0)("xyz+zyr")
挑战七:滑动
将特殊 token "<" 替换为最接近的 "<" value (2 层):
def slide(match, seq=tokens): x = cumsum(match) y = ((key(x) == query(x + 1)) & (key(match) == query(True))).value(seq) seq = where(match, seq, y) return seq.name("slide") slide(tokens != "<").input("xxxh<<<l")
挑战八:增加
你要执行两个数字的添加。这是步骤。
add().input("683+345")
- 分成两部分。转制成整形。加入
“683+345” => [0, 0, 0, 9, 12, 8]
- 计算携带条款。三种可能性:1 个携带,0 不携带,< 也许有携带。
[0, 0, 0, 9, 12, 8] => “00<100”
- 滑动进位系数
“00<100” => 001100"
- 完成加法
这些都是 1 行代码。完整的系统是 6 个注意力机制。(尽管 Gail 说,如果你足够细心则可以在 5 个中完成!)。
def add(sop=tokens): # 0) Parse and add x = atoi(split("+", 0, sop)) + atoi(split("+", 1, sop)) # 1) Check for carries carry = shift(-1, "0", where(x > 9, "1", where(x == 9, "<", "0"))) # 2) In parallel, slide carries to their column carries = atoi(slide(carry != "<", carry)) # 3) Add in carries. return (x + carries) % 10 add()("683+345")
683 + 345
1028
完美搞定!
参考资料 & 文内链接:
- 如果你对这个主题感兴趣想了解更多,请查看论文:Thinking Like Transformers
- 以及了解更多 RASP 语言
- 如果你对「形式语言和神经网络」(FLaNN) 感兴趣或者有认识感兴趣的人,欢迎邀请他们加入我们的 线上社区!
- 本篇博文,包含库、Notebook 和博文的内容
- 本博客文章由 Sasha Rush 和 Gail Weiss 共同编写
<hr>
英文原文:Thinking Like Transformers
译者:innovation64 (李洋)

低调大师中文资讯倾力打造互联网数据资讯、行业资源、电子商务、移动互联网、网络营销平台。
持续更新报道IT业界、互联网、市场资讯、驱动更新,是最及时权威的产业资讯及硬件资讯报道平台。
转载内容版权归作者及来源网站所有,本站原创内容转载请注明来源。
- 上一篇
K8s——master扩容
一、Master高可用架构 Kubernetes作为容器集群系统,通过健康检查+重启策略实现了Pod故障自我修复能力,通过调度算法实现将Pod分布式部署,并保持预期副本数,根据Node失效状态自动在其他Node拉起Pod,实现了应用层的高可用性。 针对Kubernetes集群,高可用性还应包含以下两个层面的考虑:Etcd数据库的高可用性和Kubernetes Master组件的高可用性。 而Etcd我们已经采用3个节点组建集群实现高可用,本节将对Master节点高可用进行说明和实施。 Master节点扮演着总控中心的角色,通过不断与工作节点上的Kubelet和kube-proxy进行通信来维护整个集群的健康工作状态。如果Master节点故障,将无法使用kubectl工具或者API做任何集群管理。 Master节点主要有三个服务kube-apiserver、kube-controller-manager和kube-scheduler,其中kube-controller-manager和kube-scheduler组件自身通过选择机制已经实现了高可用,所以Master高可用主要针对kube...
- 下一篇
支付对接常用的加密方式介绍以及java代码实现
京东科技 姚永健 一、术语表: 1.对称算法 加密解密密钥是相同的。这些算法也叫秘密密钥算法或单密钥算法,它要求发送者和接收者在安全通信之前,商定一个密钥。对称算法的安全性依赖于密钥,泄漏密钥就意味着任何人都能对消息进行加密解密。只要通信需要保密,密钥就必须保密。 对称算法可分为两类。一次只对明文中的单个位(有时对字节)运算的算法称为序列算法或序列密码。另一类算法是对明文的一组位进行运算,这些位组称为分组,相应的算法称为分组算法或分组密码。现代计算机密码算法的典型分组长度为64位――这个长度大到足以防止分析破译,但又小到足以方便作用。 2.非对称算法 非对称算法也叫公开密钥加密,它是用两个数学相关的密钥对信息进行编码。在此系统中,其中一个密钥叫公开密钥,可随意发给期望与密钥持有者进行安全通信的人。公开密钥用于对信息加密。第二个密钥是私有密钥,属于密钥持有者,此人要仔细保存私有密钥。密钥持有者用私有密钥对收到的信息进行解密。 一般来说,都是公钥加密,私钥解密。如果系统双方需要相互通讯,可以生成两对密钥对。各自保存好自己的私钥和对方的公钥,用公钥加密,私钥进行解密 3.可逆加密算法...
相关文章
文章评论
共有0条评论来说两句吧...
文章二维码
点击排行
推荐阅读
最新文章
- CentOS7编译安装Gcc9.2.0,解决mysql等软件编译问题
- SpringBoot2整合Redis,开启缓存,提高访问速度
- SpringBoot2整合MyBatis,连接MySql数据库做增删改查操作
- CentOS8,CentOS7,CentOS6编译安装Redis5.0.7
- MySQL8.0.19开启GTID主从同步CentOS8
- Mario游戏-低调大师作品
- Linux系统CentOS6、CentOS7手动修改IP地址
- Docker使用Oracle官方镜像安装(12C,18C,19C)
- Docker安装Oracle12C,快速搭建Oracle学习环境
- CentOS7安装Docker,走上虚拟化容器引擎之路