《中国人工智能学会通讯》——7.2 基于深度学习的自然语言处理
7.2 基于深度学习的自然语言处理
深度学习旨在模拟人脑对事物的认知过程,一般是指建立在含有多层非线性变换的神经网络结构之上,对数据的表示进行抽象和学习的一系列机器学习算法。该方法已对语音识别、图像处理等领域的进步起到了极大的推动作用,同时也引起了自然语言处理领域学者的广泛关注。
如图 1 所示,深度学习为自然语言处理的研究主要带来了两方面的变化,一方面是使用统一的分布式(低维、稠密、连续)向量表示不同粒度的语言单元,如词、短语、句子和篇章等;另一方面是使用循环、卷积、递归等神经网络模型对不同的语言单元向量进行组合,获得更大语言单元的表示。除了不同粒度的单语语言单元外,不同种类的语言,甚至不同模态(语言、图像等)的数据都可以通过类似的组合方式,表示在相同的语义向量空间中;然后通过在向量空间中的运算来实现分类、推理、生成等各种能力,并应用于各种相关的任务之中。下面分别对这两方面加以详细的阐述。

低调大师中文资讯倾力打造互联网数据资讯、行业资源、电子商务、移动互联网、网络营销平台。
持续更新报道IT业界、互联网、市场资讯、驱动更新,是最及时权威的产业资讯及硬件资讯报道平台。
转载内容版权归作者及来源网站所有,本站原创内容转载请注明来源。
- 上一篇
《中国人工智能学会通讯》——12.53 知识图谱构建技术
12.53 知识图谱构建技术 知识图谱中知识的来源有两类,一类是互联网上分布、异构海量资源;一类是已有的结构化的异构语义资源。从第一类资源中构建知识图谱的方法根据获取知识的类型分为概念层次学习、事实学习、事件学习等,而第二类资源进行的工作是异构资源的语义集成。 概念层次学习概念是人们理解客观世界的线索,是人们对客观世界中的事物在不同层次上的概念化描述,概念层次是知识图谱的“骨骼”。概念层次学习就是通过合理的技术,抽取知识表示中的概念,并确定其上下位关系。概念层次学习多采用基于启发式规则的方法,其基本思路是根据上下位概念的陈述模式,从大规模资源中找出可能具有上下位关系的概念对,并对上下位关系进行归纳。另一类是基于统计的概念层次学习方法[27] ,假设相同概念出现的上下文也相似,利用词语或实体分布的相似性,通过定义计算特征学习概率模型来得到概念结构。 事实学习知识图谱中事实以三元组的形式表示,事实的数量决定了知识图谱的丰富程度。按照知识图谱构建时采用的机器学习方法可以分为有监督、半有监督及无监督的知识图谱构建方法。 有监督的事实知识获取方法需要有已标注文档作为训练集,可以分为基于规则学习、...
- 下一篇
《中国人工智能学会通讯》——7.3 分布式表示
7.3 分布式表示 深度学习最早在自然语言处理中的应用是神经网络语言模型[4] ,其背后的一个基本假设是使用低维、稠密、连续的向量表示词汇,又被称为分布式词表示(Distributed Word Representation)或词嵌入(Word Embedding)。从直觉上来讲,使用该项技术,可以将相似的词汇表示为相似的向量,如“马铃薯”和“土豆”的词向量比较相似。这样,如果我们在训练数据中只观察到了“马铃薯”,即使在测试时出现了“土豆”,也能通过词向量判断其与“马铃薯”比较相似,从而在一定程度上缓解了自然语言处理中常见的数据稀疏问题。 在理论上,将原有高维、稀疏、离散的词汇表示方法(又称为 One-hot 表示)映射为分布式表示是一种降维方法,可有效克服机器学习中的“维数灾难(Curse of Dimensionality)”问题,从而获得更好的学习效果。同时这种分布式表示的表达能力更强,理论上其表达能力与其维度成指数关系,而传统离散表示是线性关系。另外一种对分布式词表示的理解是,不同维度表示了词的不同主题,各维度上的数值表示了一个词对于不同主题的权重,这相当于将原来线性不可分的一...
相关文章
文章评论
共有0条评论来说两句吧...
文章二维码
点击排行
推荐阅读
最新文章
- SpringBoot2配置默认Tomcat设置,开启更多高级功能
- Springboot2将连接池hikari替换为druid,体验最强大的数据库连接池
- MySQL8.0.19开启GTID主从同步CentOS8
- CentOS7,8上快速安装Gitea,搭建Git服务器
- CentOS7,CentOS8安装Elasticsearch6.8.6
- SpringBoot2整合Redis,开启缓存,提高访问速度
- Jdk安装(Linux,MacOS,Windows),包含三大操作系统的最全安装
- 设置Eclipse缩进为4个空格,增强代码规范
- CentOS8安装Docker,最新的服务器搭配容器使用
- SpringBoot2全家桶,快速入门学习开发网站教程