您现在的位置是:首页 > 文章详情

SparkStreaming+Kafka

日期:2018-09-05点击:496

摘自 :
Spark踩坑记——Spark Streaming+Kafka

SpringStreaming+Kafka

1.SpringStreaming+Kafka 接受数据和发送数据

(1)SparkStreaming 接受kafka方式

  • 基于Received的方式
    基于Receiverd方式获取数据
    这里写图片描述
  • 基于DirectKafkaStreaming
    KafkaStream-Recevied方式

DirectKafkaStreaming 相比较 ReceiverKafkaStreaming
- 简化的并行:在Receiver的方式中我们提到创建多个Receiver之后利用union来合并成一个Dstream的方式提高数据传输并行度。而在Direct方式中,Kafka中的partition与RDD中的partition是一一对应的并行读取Kafka数据,这种映射关系也更利于理解和优化。
- 高效:在Receiver的方式中,为了达到0数据丢失需要将数据存入Write Ahead Log中,这样在Kafka和日志中就保存了两份数据,浪费!而第二种方式不存在这个问题,只要我们Kafka的数据保留时间足够长,我们都能够从Kafka进行数据恢复。
- 精确一次:在Receiver的方式中,使用的是Kafka的高阶API接口从Zookeeper中获取offset值,这也是传统的从Kafka中读取数据的方式,但由于Spark Streaming消费的数据和Zookeeper中记录的offset不同步,这种方式偶尔会造成数据重复消费。而第二种方式,直接使用了简单的低阶Kafka API,Offsets则利用Spark Streaming的checkpoints进行记录,消除了这种不一致性。

(2)Spark 发送数据至Kafka中

一般处理方式 : 在RDD.forpartition进行操作

input.foreachRDD(rdd => // 不能在这里创建KafkaProducer rdd.foreachPartition(partition => partition.foreach{ case x:String=>{ val props = new HashMap[String, Object]() props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, brokers) props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, "org.apache.kafka.common.serialization.StringSerializer") props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, "org.apache.kafka.common.serialization.StringSerializer") println(x) val producer = new KafkaProducer[String,String](props) val message=new ProducerRecord[String, String]("output",null,x) producer.send(message) } } ) ) 

此方式的缺点在于每次foreach操作都需要重新创建一次kafkaProduce 主要花费时间都在 创建连接的时候.
基于此我们以以下方式进行操作

  • 首先,我们需要将KafkaProducer利用lazy val的方式进行包装如下:
 import java.util.concurrent.Future import org.apache.kafka.clients.producer.{ KafkaProducer, ProducerRecord, RecordMetadata } class KafkaSink[K, V](createProducer: () => KafkaProducer[K, V]) extends Serializable { /* This is the key idea that allows us to work around running into NotSerializableExceptions. */ lazy val producer = createProducer() def send(topic: String, key: K, value: V): Future[RecordMetadata] = producer.send(new ProducerRecord[K, V](topic, key, value)) def send(topic: String, value: V): Future[RecordMetadata] = producer.send(new ProducerRecord[K, V](topic, value)) } object KafkaSink { import scala.collection.JavaConversions._ def apply[K, V](config: Map[String, Object]): KafkaSink[K, V] = { val createProducerFunc = () => { val producer = new KafkaProducer[K, V](config) sys.addShutdownHook { // Ensure that, on executor JVM shutdown, the Kafka producer sends // any buffered messages to Kafka before shutting down. producer.close() } producer } new KafkaSink(createProducerFunc) } def apply[K, V](config: java.util.Properties): KafkaSink[K, V] = apply(config.toMap) }
  • 之后我们利用广播变量的形式,将KafkaProducer广播到每一个executor,如下:
// 广播KafkaSink val kafkaProducer: Broadcast[KafkaSink[String, String]] = { val kafkaProducerConfig = { val p = new Properties() p.setProperty("bootstrap.servers", Conf.brokers) p.setProperty("key.serializer", classOf[StringSerializer].getName) p.setProperty("value.serializer", classOf[StringSerializer].getName) p } log.warn("kafka producer init done!") ssc.sparkContext.broadcast(KafkaSink[String, String](kafkaProducerConfig)) }
  • 这样我们就能在每个executor中愉快的将数据输入到kafka当中:
//输出到kafka segmentedStream.foreachRDD(rdd => { if (!rdd.isEmpty) { rdd.foreach(record => { kafkaProducer.value.send(Conf.outTopics, record._1.toString, record._2) // do something else }) } })

2.Spark streaming+Kafka调优

2.1 批处理时间设置

参数设置:

2.2 合理的Kafka拉取量

参数设置: spark.streaming.kafka.maxRatePerPartition

2.3 缓存反复使用的Dstream(RDD)

DStream.cache()

2.4 设置合理的GC

长期使用Java的小伙伴都知道,JVM中的垃圾回收机制,可以让我们不过多的关注与内存的分配回收,更加专注于业务逻辑,JVM都会为我们搞定。对JVM有些了解的小伙伴应该知道,在Java虚拟机中,将内存分为了初生代(eden generation)、年轻代(young generation)、老年代(old generation)以及永久代(permanent generation),其中每次GC都是需要耗费一定时间的,尤其是老年代的GC回收,需要对内存碎片进行整理,通常采用标记-清楚的做法。同样的在Spark程序中,JVM GC的频率和时间也是影响整个Spark效率的关键因素。在通常的使用中建议:

--conf "spark.executor.extraJavaOptions=-XX:+UseConcMarkSweepGC"

2.5 设置合理的CPU资源数

CPU的core数量,每个executor可以占用一个或多个core,可以通过观察CPU的使用率变化来了解计算资源的使用情况,例如,很常见的一种浪费是一个executor占用了多个core,但是总的CPU使用率却不高(因为一个executor并不总能充分利用多核的能力),这个时候可以考虑让么个executor占用更少的core,同时worker下面增加更多的executor,或者一台host上面增加更多的worker来增加并行执行的executor的数量,从而增加CPU利用率。但是增加executor的时候需要考虑好内存消耗,因为一台机器的内存分配给越多的executor,每个executor的内存就越小,以致出现过多的数据spill over甚至out of memory的情况。

2.6设置合理的parallelism

partition和parallelism,partition指的就是数据分片的数量,每一次task只能处理一个partition的数据,这个值太小了会导致每片数据量太大,导致内存压力,或者诸多executor的计算能力无法利用充分;但是如果太大了则会导致分片太多,执行效率降低。在执行action类型操作的时候(比如各种reduce操作),partition的数量会选择parent RDD中最大的那一个。而parallelism则指的是在RDD进行reduce类操作的时候,默认返回数据的paritition数量(而在进行map类操作的时候,partition数量通常取自parent RDD中较大的一个,而且也不会涉及shuffle,因此这个parallelism的参数没有影响)。所以说,这两个概念密切相关,都是涉及到数据分片的,作用方式其实是统一的。通过spark.default.parallelism可以设置默认的分片数量,而很多RDD的操作都可以指定一个partition参数来显式控制具体的分片数量。
在SparkStreaming+kafka的使用中,我们采用了Direct连接方式,前文阐述过Spark中的partition和Kafka中的Partition是一一对应的,我们一般默认设置为Kafka中Partition的数量。

2.7使用高性能的算子

  • 使用reduceByKey/aggregateByKey替代groupByKey
  • 使用mapPartitions替代普通map
  • 使用foreachPartitions替代foreach
  • 使用filter之后进行coalesce操作
  • 使用repartitionAndSortWithinPartitions替代repartition与sort类操作
原文链接:https://yq.aliyun.com/articles/664014
关注公众号

低调大师中文资讯倾力打造互联网数据资讯、行业资源、电子商务、移动互联网、网络营销平台。

持续更新报道IT业界、互联网、市场资讯、驱动更新,是最及时权威的产业资讯及硬件资讯报道平台。

转载内容版权归作者及来源网站所有,本站原创内容转载请注明来源。

文章评论

共有0条评论来说两句吧...

文章二维码

扫描即可查看该文章

点击排行

推荐阅读

最新文章