大模型微调方法总结:LoRA、Adapter、Prefix-tuning、P-tuning、Prompt-tuning
随着深度学习技术的不断发展,大型预训练模型已成为许多任务的重要工具。然而,微调(finetuning)这些大模型以适应特定任务是一个复杂且计算密集型的过程。本文将重点介绍五种不同的微调方法:LoRA、Adapter、Prefix-tuning、P-tuning和Prompt-tuning,并对它们进行总结。
LoRA (Learned Representations for Finetuning) LoRA是一种新型的微调方法,旨在解决预训练模型微调过程中存在的两大问题:模型调整过程中对初始模型过度依赖以及微调过程中存在的过拟合问题。LoRA通过在预训练模型中引入一个额外的线性层,并使用特定任务的训练数据来微调这个线性层。这种方法使模型能够更好地适应特定任务,同时减少了对初始模型的过度依赖。
Adapter Adapter是一种简单而有效的微调方法,它通过在预训练模型的特定层上添加一个可学习的附加层来适应特定任务。这个附加层可以是线性层、非线性层或其他类型的层,其目的是对预训练模型的输出进行微调,使其更好地适应特定任务。Adapter具有较低的计算成本和较好的性能,使其成为处理小数据集的理想选择。
Prefix-tuning Prefix-tuning方法通过微调预训练模型的特定部分(称为“前缀”)以适应特定任务。这种方法只微调前缀,而不是整个模型,从而减少了计算成本和过拟合的风险。Prefix-tuning的性能通常优于传统的微调方法,但不及完整的模型微调。
P-tuning P-tuning是一种改进的微调方法,通过引入一个参数化转换矩阵来调整预训练模型的权重。这个矩阵可以学习地改变预训练模型的权重分布,使其更好地适应特定任务。P-tuning在保持良好性能的同时,减少了微调过程中对初始模型的过度依赖。
Prompt-tuning Prompt-tuning是一种新颖的微调方法,利用了近年来自然语言处理领域的prompting技术。该方法通过修改预训练模型的输入来适应特定任务,使其在输入阶段就考虑到任务的特定需求。Prompt-tuning可以显著提高模型的性能,同时减少了对初始模型的过度依赖和过拟合的风险。
总结: 这五种微调方法在处理大型预训练模型以适应特定任务方面都具有各自的优点和适用场景。LoRA通过引入额外的线性层来减少对初始模型的过度依赖和过拟合问题;Adapter具有较低的计算成本和较好的性能,适用于小数据集;Prefix-tuning只微调预训练模型的前缀,减少了计算成本和过拟合的风险;P-tuning通过引入参数化转换矩阵来调整预训练模型的权重,减少了过度依赖;Prompt-tuning利用prompting技术修改预训练模型的输入,显著提高性能并减少过度依赖和过拟合的风险。在实际应用中,应根据具体任务和数据集选择合适的微调方法。

低调大师中文资讯倾力打造互联网数据资讯、行业资源、电子商务、移动互联网、网络营销平台。
持续更新报道IT业界、互联网、市场资讯、驱动更新,是最及时权威的产业资讯及硬件资讯报道平台。
转载内容版权归作者及来源网站所有,本站原创内容转载请注明来源。
- 上一篇
逻辑多租场景下,故障爆炸半径的控制实践
本文分享自华为云社区《逻辑多租场景下,故障爆炸半径的控制实践》,作者:王福强 陈子栋。 背景 某系统是一款华为自研的工具平台,可部署在公有云上,面向全球多项目、多客户提供服务。为了满足数据安全合规要求,并尽可能降低用户使用成本以及提升运维效率,整体上采用了混合多租的设计方案,逻辑层通过ID识别不同租户实现请求分流,各租户的开发者可在租户内开发独立的APP,例如web或终端页面、数据模型、服务、接口等。 在日常运行过程中,由于多租户共享同一个平台资源,而各租户APP性能千差万别,单租户过载、应用死循环等导致的平台级故障时有发生,而这些不确定性应用场景却承载在相对确定的底层计算资源和平台服务之上,给系统整体稳定性带来了严峻挑战。 (备注:本文中的故障特指逻辑多租场景下,单个租户自开发的APP异常引发的平台故障,不包括平台软件bug导致的故障。) 多租架构形态介绍 该系统采用混合多租架构,针对公共服务(如登录鉴权等)采取共享模式,全部用户同享同一集群;针对业务逻辑处理单元,按照租户的等级与规模分别按需配置资源独享(物理多租)或共享(逻辑多租)。 物理多租:服务集群为单租户独享,部署在独立的云...
- 下一篇
模型服务网格:云原生下的模型服务管理
模型服务网格(Model Service Mesh)是一种架构模式,用于在分布式环境中部署和管理机器学习模型服务。它提供了一个可扩展的、高性能的基础架构,用于将多个模型服务进行管理、部署和调度,以此更好地处理模型的部署、版本管理、路由和推理请求的负载均衡。 模型服务网格的核心思想是将模型部署为可伸缩的服务,并通过网格来管理和路由这些服务, 简化模型服务的管理和运维。它通过将模型服务抽象为可编排的、可伸缩的单元,使得模型的部署、扩展和版本控制变得更加容易。它还提供了一些核心功能,如负载均衡、自动伸缩、故障恢复等,以确保模型服务的高可用性和可靠性。 模型可以根据实际的推理请求负载进行自动缩放和负载均衡,从而实现高效的模型推理。模型服务网格还提供了一些高级功能,如流量分割、A/B 测试、灰度发布等,以便更好地控制和管理模型服务的流量,可以轻松切换和回滚不同的模型版本。它还支持动态路由,可以根据请求的属性,如模型类型、数据格式或其他元数据,将请求路由到适当的模型服务。 阿里云服务网格 ASM 已经提供了一个可扩展的、高性能的模型服务网格基础能力,用于将多个模型服务进行管理、部署和调度,以此更好...
相关文章
文章评论
共有0条评论来说两句吧...
文章二维码
点击排行
推荐阅读
最新文章
- CentOS6,7,8上安装Nginx,支持https2.0的开启
- CentOS8,CentOS7,CentOS6编译安装Redis5.0.7
- SpringBoot2更换Tomcat为Jetty,小型站点的福音
- Jdk安装(Linux,MacOS,Windows),包含三大操作系统的最全安装
- CentOS7,8上快速安装Gitea,搭建Git服务器
- SpringBoot2整合MyBatis,连接MySql数据库做增删改查操作
- SpringBoot2全家桶,快速入门学习开发网站教程
- CentOS8安装MyCat,轻松搞定数据库的读写分离、垂直分库、水平分库
- CentOS8编译安装MySQL8.0.19
- CentOS7,CentOS8安装Elasticsearch6.8.6