技术干货|如何利用 ChunJun 实现数据实时同步?
实时同步是 ChunJun 的⼀个重要特性,指在数据同步过程中,数据源与⽬标系统之间的数据传输和更新⼏乎在同⼀时间进⾏。
在实时同步场景中我们更加关注源端,当源系统中的数据发⽣变化时,这些变化会⽴即传输并应⽤到⽬标系统,以保证两个系统中的数据保持⼀致。这个特性需要作业运⾏过程中 source 插件不间断地频繁访问源端。在⽣产场景下,对于这类⻓时间运⾏、资源可预估、需要稳定性的作业,我们推荐使⽤ perjob 模式部署。
插件⽀持 JSON 脚本和 SQL 脚本两种配置⽅式,具体的参数配置请参考「ChunJun连接器文档」:https://sourl.cn/vxq6Zp
本文将为大家介绍如何使用 ChunJun 实时同步,以及 ChunJun ⽀持的 RDB 实时采集插件的特性、采集逻辑及其原理,帮助大家更好地理解 ChunJun 与实时同步。
如何使用 ChunJun 实时同步
为了让⼤家能更深⼊了解如何使⽤ ChunJun 做实时同步,我们假设有这样⼀个场景:⼀个电商⽹站希望将其订单数据从 MySQL 数据库实时同步到 HBase 数据库,以便于后续的数据分析和处理。
在这个场景中,我们将使⽤ Kafka 作为中间消息队列,以实现 MySQL 和 HBase 之间的数据同步。这样做的好处是 MySQL 表中变更可以实时同步到 HBase 结果表中,⽽不⽤担⼼历史数据被修改后 HBase 表未被同步。
如果在⼤家的实际应用场景中,不关⼼历史数据是否变更(或者历史数据根本不会变更),且业务表有⼀个递增的主键,那么可以参考本⽂之后的 JDBC-Polling 模式⼀节的内容。
· 数据源组件的部署以及 ChunJun 的部署这⾥不做详细描述
· 案例中的脚本均以 SQL 脚本为例,JSON 脚本也能实现相同功能,但在参数名上可能存在出⼊,使⽤ JSON 的同学可以参考上文 「ChunJun 连接器」⽂档中的参数介绍
采集 MySQL 数据到 Kafka
● 数据准备
⾸先,我们在 Kafka 中创建⼀个名为 order_dml 的 topic,然后在 MySQL 中创建⼀个订单表,并插⼊⼀些测试数据。创建表的 SQL 语句如下:
-- 创建⼀个名为ecommerce_db的数据库,⽤于存储电商⽹站的数据 CREATE DATABASE IF NOT EXISTS ecommerce_db; USE ecommerce_db; -- 创建⼀个名为orders的表,⽤于存储订单信息 CREATE TABLE IF NOT EXISTS orders ( id INT AUTO_INCREMENT PRIMARY KEY, -- ⾃增主键 order_id VARCHAR(50) NOT NULL, -- 订单编号,不能为空 user_id INT NOT NULL, -- ⽤户ID,不能为空 product_id INT NOT NULL, -- 产品ID,不能为空 quantity INT NOT NULL, -- 订购数量,不能为空 order_date TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP -- 订单⽇期,默认值为当前时间 戳,不能为空 ); -- 插⼊⼀些测试数据到orders表 INSERT INTO orders (order_id, user_id, product_id, quantity) VALUES ('ORD123', 1, 101, 2), ('ORD124', 2, 102, 1), ('ORD125', 3, 103, 3), ('ORD126', 1, 104, 1), ('ORD127', 2, 105, 5);
● 使用 Binlog 插件采集数据到 Kafka
为了表示数据的变化类型和更好地处理数据变化,实时采集插件一般会用 RowData(Flink 内部数据结构)中的 RowKind 记录⽇志中的数据事件(insert、delete 等)类型,binlog 插件也⼀样。而当数据被打到 Kafka 中时,RowKind 信息应该怎么处理呢?
这⾥我们就需要⽤到 upsert-kafka-x,upsert-kafka-x 会识别 RowKind。对各类时间的处理逻辑如下:
• insert 数据:序列化后直接打⼊
• delete 数据:只写 key,value 置为 null
• update 数据:分为⼀条 delete 数据和 insert 数据处理,即先根据主键删除原本的数据,再写⼊ update 后的数据
在下⼀步中我们再解释如何将 Kafka 中的数据还原到 HBase 或者其他⽀持 upsert 语义的数据库中,接下来我们来编写 SQL 脚本,实现 MySQL 数据实时采集到 Kafka 中的功能,示例如下:
CREATE TABLE binlog_source ( id int, order_id STRING, user_id INT, product_id int, quantity int, order_date TIMESTAMP(3) ) WITH ( 'connector' = 'binlog-x', 'username' = 'root', 'password' = 'root', 'cat' = 'insert,delete,update', 'url' = 'jdbc:mysql://localhost:3306/ecommerce_db?useSSL=false', 'host' = 'localhost', 'port' = '3306', 'table' = 'ecommerce_db.orders', 'timestamp-format.standard' = 'SQL', 'scan.parallelism' = '1' ); CREATE TABLE kafka_sink ( id int, order_id STRING, user_id INT, product_id int, quantity int, order_date TIMESTAMP(3),PRIMARY KEY (id) NOT ENFORCED ) WITH ( 'connector' = 'upsert-kafka-x', 'topic' = 'orders', 'properties.bootstrap.servers' = 'localhost:9092', 'key.format' = 'json', 'value.format' = 'json', 'value.fields-include' = 'ALL', 'sink.parallelism' = '1' ); insert into kafka_sink select * from binlog_source u;
还原 Kafka 中的数据到 HBase
上述步骤中,我们通过 binlog-x 和 upsert-kafka-x,将 MySQL 中的数据实时采集到了 Kafka 中。解铃还须系铃⼈,我们可以通过 upsert-kafka-x 再去将 Kafka 中的数据解析成带有 upsert 语义的数据。
upsert-kafka-x 作为 source 插件时,会判断 Kafka 中数据的 value 是否为 null,如果 value 为 null 则标记这条数据的 RowKind 为 DELETE,否则将数据的 ROWKIND 标记为 INSERT。
ChunJun的 hbase-x 插件⽬前已经具备了 upsert 语句的能⼒,使⽤ hbase-x 即可将 Kafka 中的数据还原到 hbase中。接下来是 SQL 脚本示例,为了⽅便在 HBase 中查看数据结果,我们将 int 数据 cast 为 string 类型:
CREATE TABLE kafka_source ( id int, order_id STRING, user_id INT, product_id INT, quantity INT, order_date TIMESTAMP(3), PRIMARY KEY (id) NOT ENFORCED ) WITH ( 'connector' = 'upsert-kafka-x', 'topic' = 'orders', 'properties.bootstrap.servers' = 'localhost:9092', 'properties.group.id' = 'test_group', 'key.format' = 'json', 'value.format' = 'json', 'scan.parallelism' = '1' ); CREATE TABLE hbase_sink( rowkey STRING, order_info ROW < order_id STRING, user_id STRING, product_id STRING, quantity STRING, order_date STRING >, PRIMARY KEY (rowkey) NOT ENFORCED ) WITH( -- 这⾥以hbase14为例,如果hbase版本是2.x,我们可以使⽤hbase2-x插件代替 'connector' = 'hbase14-x', 'zookeeper.quorum' = 'localhost:2181', 'zookeeper.znode.parent' = '/hbase', 'table-name' = 'ecommerce_db:orders', 'sink.parallelism' = '1' ); INSERT INTO hbase_sink SELECT cast(id as STRING), ROW( cast(order_id as STRING), cast(user_id as STRING), cast(product_id as STRING), cast(quantity as STRING), cast(order_date as STRING) ) FROM kafka_source
Tips:如果我们不需要 Kafka 中间件,也可以使⽤ binlog-x 插件直接对接 hbase-x 插件。
ChunJun 支持的 RDB 实时采集插件
本节主要介绍 ChunJun 的 RDB 实时采集插件的特性、采集逻辑及其原理。
ChunJun 的 RDB 实时采集可以实时监视数据库中的更改,并在发⽣更改时读取数据变化,例如插⼊、更新和删除操作。使⽤ ChunJun 实时采集,我们可以实时获取有关数据库中更改的信息,从⽽能够及时响应这些更改,如此便可以帮助我们更好地管理和利⽤ RDB 数据库中的数据。
并且 ChunJun 提供了故障恢复和断点续传功能来确保数据的完整性。ChunJun 实时采集类插件的⼤致实现步骤如下:
· 连接数据库,确认读取点位,读取点位可以理解为⼀个 offset,如 Binlog 中,指⽇志的⽂件名和⽂件的 position 信息
· 根据读取点位开始读取 redolog,获取其中关于数据变更相关的操作记录
· 根据 tableName、操作事件(如insert、delete、update)等过滤信息过滤出需要的 log ⽇志
· 解析 log ⽇志,解析后的事件信息包括表名、数据库名、操作类型(插⼊、更新或删除)和变更的数据⾏等
· 将解析出来的数据会加⼯为 ChunJun 内部统⼀的 DdlRowData 供下游使⽤
ChunJun ⽬前已⽀持的实时采集 Connector 有:binlog(mysql)、oceanbasecdc、oraclelogminer、sqlservercdc。
Binlog 简介
ChunJun binlog 插件的主要功能是读取 MySQL 的⼆进制⽇志(binlog)⽂件。这些⽂件记录了所有对数据的更改操作,如插⼊、更新和删除等。⽬前,该插件依赖 Canal 组件来读取 MySQL 的 binlog ⽂件。
核⼼操作步骤如下:
• 确认读取点位:在 binlog 插件中,我们可以在脚本的 start 字段中直接指定 journal-name(binlog ⽂件名)和 position(⽂件的特定位置)
• 读取binlog:binlog 插件将⾃身伪装成 MySQL 的 Slave 节点,向 MySQL Master 发送请求,要求将 binlog ⽂件的数据流发送给它
• 故障恢复和断点续传:故障时,插件会记录当前的 binlog 位置信息,从 checkpoint/savepoint 恢复后,我们可以从上次记录的位置继续读取 binlog ⽂件,确保数据变化的完整性
使⽤ binlog 所需的权限在「binlog插件使⽤⽂档」中有详细说明,链接如下:
OracleLogminer 简介
Logminer 插件借助 Oracle 提供的 Logminer ⼯具通过读取视图的⽅式获取 Oracle redolog 中的信息。
核⼼操作步骤如下:
01 定位需读取起始点位(start_scn)
⽬前 logminer ⽀持四种策略指定 StartScn:
· all:从 Oracle 数据库中最早的归档⽇志组开始采集(不建议使⽤)
· current:任务运⾏时的 SCN 号
· time:指定时间点对应的 SCN 号
· scn:直接指定 SCN 号
02 定位需要读取的结束点位(end_scn)
插件根据 start_scn 和 maxLogFileSize(默认5G)获取可加载的 redolog ⽂件列表,end_scn 取这个⽂件列表中最⼤的 scn 值。
03 加载 redo ⽇志到 Logminer
通过⼀个存储过程,将 scn 区间范围内的 redolog 加载到 Logminer ⾥。
04 从视图中读取数据
以 scn > ? 作为 where 条件直接查询 v$logmnr_contents 视图内的信息即可获取 redolog 中的数据。
05 重复1-4步骤,实现不断的读取
如标题。
06 故障恢复和断点续传
在发⽣故障时,插件会保存当前消费的 scn 号,重启时从上次的 scn 号开始读取,确保数据完整性。
• 关于该插件原理的详细介绍请参⻅「Oracle Logminer 实现原理说明⽂档」:
• 使⽤lominer插件的前提条件详⻅「Oracle配置LogMiner」:
SqlServerCDC 简介
SqlServerCDC 插件依赖 SQL Server 的 CDC Agent 服务提供的视图获取 redolog 中的信息。
核⼼操作步骤如下:
01 定位需读取起始点位(from_lsn)
⽬前 SqlserverCDC 仅⽀持直接配置 lsn 号,如果 lsn 号未配置,则取数据库中当前最⼤的 lsn 号为 from_lsn。
02 定位需要读取的结束点位(to_lsn)
SqlserverCDC 插件定期地(可通过 pollInterval 参数指定)获取数据库中的最⼤ lsn 为 end_lsn。
03 从视图中读取数据
查询 Agent 服务提供的视图中 lsn 区间范围内的数据,过滤出需要监听的表及事件类型。
04 重复1-3步骤,实现不断的读取
如标题。
05 故障恢复和断点续传
在发⽣故障时,插件会保存当前消费的 lsn 号。重启时从上次的 lsn 号开始读取,确保数据完整性。
• 关于该插件原理的详细介绍请参⻅「Sqlserver CDC 实现原理说明⽂档」:
• 配置 SqlServer CDC Agent 服务详⻅「Sqlserver 配置 CDC ⽂档」:
OceanBaseCDC 简介
OceanBase 是蚂蚁集团开源的⼀款分布式关系型数据库,它使⽤⼆进制⽇志(binlog)记录数据变更。OceanBaseCDC 的实现依赖于 OceanBase 提供的 LogProxy 服务,LogProxy 提供了基于发布-订阅模型的服务,允许使⽤ OceanBase 的 logclient 订阅特定的 binlog 数据流。
OceanBaseCDC 启动⼀个 Listener 线程。当 logclient 连接到 LogProxy 后,Listener 会订阅经过数据过滤的 binlog,然后将其添加到内部维护的列表中。当收到 COMMIT 信息后,Listener 会将⽇志变更信息传递给⼀个阻塞队列,由主线程消费并将其转换为 ChunJun 内部的 DdlRowData,最终发送到下游。
JDBC-Polling 模式读
JDBC 插件的 polling 读取模式是基于 SQL 语句做数据读取的,相对于基于重做⽇志的实时采集成本更低,但 jdbc 插件做实时同步对业务场景有更⾼的要求:
· 有⼀个数值类型或者时间类型的递增主键
· 不更新历史数据或者不关⼼历史数据是否更新,仅关⼼新数据的获取
实现原理简介
• 设置递增的业务主键作为 polling 模式依赖的增量键
• 在增量读取的过程中,实时记录 increColumn 对应的值(state),作为下⼀次数据读取的起始点位
• 当⼀批数据读取完后,间隔⼀段时间之后依据 state 读取下⼀批数据
polling 依赖部分增量同步的逻辑,关于增量同步的更多介绍可以点击:
如何配置⼀个 jdbc-polling 作业
先介绍⼀下开启 polling 模式需要关注的配置项:
以 MySQL 为例,假设我们有⼀个存储订单信息的历史表,且订单的 order_id 是递增的,我们希望定期地获取这张表的新增数据。
CREATE TABLE order.realtime_order_archive ( order_id INT PRIMARY KEY COMMENT '订单唯⼀标识', customer_id INT COMMENT '客户唯⼀标识', product_id INT COMMENT '产品唯⼀标识', order_date TIMESTAMP COMMENT '订单⽇期和时间', payment_method VARCHAR(255) COMMENT '⽀付⽅式(信⽤卡、⽀付宝、微信⽀付等)', shipping_method VARCHAR(255) COMMENT '配送⽅式(顺丰速运、圆通速递等)', shipping_address VARCHAR(255) COMMENT '配送地址', order_total DECIMAL(10,2) COMMENT '订单总⾦额', discount DECIMAL(10,2) COMMENT '折扣⾦额', order_status VARCHAR(255) COMMENT '订单状态(已完成、已取消等)' );
我们可以这样配置 json 脚本的 reader 信息。
"name": "mysqlreader", "parameter": { "column" : [ "*" //这⾥假设我们读取所有字段,可以填写‘*’ ], "increColumn": "id", "polling": true, "pollingInterval": 3000, "username": "username", "password": "password", "connection": [ { "jdbcUrl": [ "jdbc:mysql://ip:3306/liuliu?useSSL=false" ], "schema":"order", "table": [ "realtime_order_archive" ] } ] } }
《数栈产品白皮书》:https://fs80.cn/cw0iw1
《数据治理行业实践白皮书》下载地址:https://fs80.cn/380a4b
想了解或咨询更多有关袋鼠云大数据产品、行业解决方案、客户案例的朋友,浏览袋鼠云官网:https://www.dtstack.com/?src=szkyzg
同时,欢迎对大数据开源项目有兴趣的同学加入「袋鼠云开源框架钉钉技术qun」,交流最新开源技术信息,qun号码:30537511,项目地址:https://github.com/DTStack

低调大师中文资讯倾力打造互联网数据资讯、行业资源、电子商务、移动互联网、网络营销平台。
持续更新报道IT业界、互联网、市场资讯、驱动更新,是最及时权威的产业资讯及硬件资讯报道平台。
转载内容版权归作者及来源网站所有,本站原创内容转载请注明来源。
- 上一篇
谷歌正在为 Android 系统开发“时间轴定位”功能
据外媒 ghack 报道,谷歌正在为 Android 的“系统设置”开发时间轴地图功能,该功能会以时间轴的形式显示用户的历史定位信息。 Google News 的编辑 Nail Sadykov 通过 Google Play 服务中的隐藏标志激活了该时间轴功能。它类似于谷歌地图上提供的用户路线(或者高德等地图的“用户足迹”)功能,但直接集成到 Android 的“系统设置”中,为 Android 用户提供管理位置数据的入口。 新功能提供了四个选项,包括: 查看用户的的时间线(过去的位置和路线) 导出时间线数据以进行 .json 备份 删除时间线数据 加密备份,以将时间线传输到另一台设备 目前该时间线功能仍在开发中,尚未在稳定 Android 版本中提供,谷歌方面也没有对此透露更多消息。时间线功能似乎是 Google 地图时间线功能的替代品,但在系统本地运行、更注重隐私,让 Android 用户更轻松、更私密地管理自己的位置历史记录。 但如果谷歌将该功能与谷歌服务相结合,则需要考量一下其隐私问题,因为谷歌的服务条款很明确地说明了“可以使用用户数据来个性化用户在谷歌服务上的体验”。
- 下一篇
读书笔记丨远程服务调用和RESTful,如何分析和抉择?
摘要:相信未来REST规范将会变得更加流行和普及。 本文分享自华为云社区《云原生时代,远程服务调用和RESTful,如何分析和抉择?》,作者:breakDawn 。 随着云原生的概念越来越火,服务的架构应该如何发展和演进,成为很多程序员关心的话题。大名鼎鼎的《深入理解java虚拟机》一书作者于21年推出了新作《凤凰架构》,从这本书中可以看到当前时下很多最新的技术或者理念。 本博文将沉淀发布这本书的学习笔记和思考。 如果希望了解更加详细的内容,欢迎购买该书继续详细学习。 访问远程服务 1 远程服务调用 这一个章节主要讲解rpc的设计理念和发展历史。 先是讲解了IPC(进程间通信)所需要的各个必要因素 接着解释RPC 是IPC的一种特例(这是最初科学家们的想法) 但PRC存在很多可靠性的问题,并不能直接等同IPC的扩展。 接着提出了RPC的三个基本问题: 如何表示数据 即序列化协议, 有grpc的proto-buffer、json、xml、java-rmi基于java自带序列化之列的 如何传递数据 基于什么网络协议传输 java-rmi的远程协议 JSON-RPC协议 SOAP协议(web...
相关文章
文章评论
共有0条评论来说两句吧...
文章二维码
点击排行
推荐阅读
最新文章
- Windows10,CentOS7,CentOS8安装MongoDB4.0.16
- CentOS8安装Docker,最新的服务器搭配容器使用
- Docker快速安装Oracle11G,搭建oracle11g学习环境
- SpringBoot2配置默认Tomcat设置,开启更多高级功能
- Jdk安装(Linux,MacOS,Windows),包含三大操作系统的最全安装
- Springboot2将连接池hikari替换为druid,体验最强大的数据库连接池
- SpringBoot2初体验,简单认识spring boot2并且搭建基础工程
- Windows10,CentOS7,CentOS8安装Nodejs环境
- SpringBoot2全家桶,快速入门学习开发网站教程
- CentOS8编译安装MySQL8.0.19