简述几种常用的排序算法
摘要:归并排序和快速排序是两种稍微复杂的排序算法,它们用的都是分治的思想,代码都通过递归来实现,过程非常相似。理解归并排序的重点是理解递推公式和 merge() 合并函数。
本文分享自华为云社区《深入浅出八种排序算法》,作者:嵌入式视觉 。
归并排序和快速排序是两种稍微复杂的排序算法,它们用的都是分治的思想,代码都通过递归来实现,过程非常相似。理解归并排序的重点是理解递推公式和 merge() 合并函数。
一,冒泡排序(Bubble Sort)
排序算法是程序员必须了解和熟悉的一类算法,排序算法有很多种,基础的如:冒泡、插入、选择、快速、归并、计数、基数和桶排序等。
冒泡排序只会操作相邻的两个数据。每次冒泡操作都会对相邻的两个元素进行比较,看是否满足大小关系要求,如果不满足就让它俩互换。一次冒泡会让至少一个元素移动到它应该在的位置,重复 n 次,就完成了 n 个数据的排序工作。
总结:如果数组有 n 个元素,最坏情况下,需要进行 n 次冒泡操作。
基础的冒泡排序算法的 C++ 代码如下:
// 将数据从小到大排序 void bubbleSort(int array[], int n){ if (n<=1) return; for(int i=0; i<n; i++){ for(int j=0; j<n-i; j++){ if (temp > a[j+1]){ temp = array[j] a[j] = a[j+1]; a[j+1] = temp; } } } }
实际上,以上的冒泡排序算法还可以优化,当某次冒泡操作已经不再进行数据交换时,说明数组已经达到有序,就不需要再继续执行后续的冒泡操作了。优化后的代码如下:
// 将数据从小到大排序 void bubbleSort(int array[], int n){ if (n<=1) return; for(int i=0; i<n; i++){ // 提前退出冒泡循环发标志位 bool flag = False; for(int j=0; j<n-i; j++){ if (temp > a[j+1]){ temp = array[j] a[j] = a[j+1]; a[j+1] = temp; flag = True; // 表示本次冒泡操作存在数据交换 } } if(!flag) break; // 没有数据交换,提交退出 } }
冒泡排序的特点:
- 冒泡过程只涉及相邻元素的交换,只需要常量级的临时空间,故空间复杂度为 O(1)O(1),是原地排序算法。
- 当有相邻的两个元素大小相等的时候,我们不做交换,相同大小的数据在排序前后不会改变顺序,所以是稳定排序算法。
- 最坏情况和平均时间复杂度都为 O(n2)O(n2),最好时间复杂度是 O(n)O(n)。
二,插入排序(Insertion Sort)
- 插入排序算法将数组中的数据分为两个区间:已排序区间和未排序区间。最初始的已排序区间只有一个元素,就是数组的第一个元素。
- 插入排序算法的核心思想就是取未排序区间的一个元素,在已排序区间中找到一个合适的位置插入,并保证已排序区间数据一直有序。
- 重复这个过程,直到未排序区间元素为空,则算法结束。
插入排序和冒泡排序一样,也包含两种操作,一种是元素的比较,一种是元素的移动。
当我们需要将一个数据 a 插入到已排序区间时,需要拿 a 与已排序区间的元素依次比较大小,找到合适的插入位置。找到插入点之后,我们还需要将插入点之后的元素顺序往后移动一位,这样才能腾出位置给元素 a 插入。
插入排序的 C++ 代码实现如下:
void InsertSort(int a[], int n){ if (n <= 1) return; for (int i = 1; i < n; i++) // 未排序区间范围 { key = a[i]; // 待排序第一个元素 int j = i - 1; // 已排序区间末尾元素 // 从尾到头查找插入点方法 while(key < a[j] && j >= 0){ // 元素比较 a[j+1] = a[j]; // 数据向后移动一位 j--; } a[j+1] = key; // 插入数据 } }
插入排序的特点:
- 插入排序并不需要额外存储空间,空间复杂度是 O(1)O(1),所以插入排序也是一个原地排序算法。
- 在插入排序中,对于值相同的元素,我们可以选择将后面出现的元素,插入到前面出现元素的后面,这样就可以保持原有的前后顺序不变,所以插入排序是稳定的排序算法。
- 最坏情况和平均时间复杂度都为 O(n2)O(n2),最好时间复杂度是 O(n)O(n)。
三,选择排序(Selection Sort)
选择排序算法的实现思路有点类似插入排序,也分已排序区间和未排序区间。但是选择排序每次会从未排序区间中找到最小的元素,将其放到已排序区间的末尾。
选择排序的最好情况时间复杂度、最坏情况和平均情况时间复杂度都为 O(n2)O(n2),是原地排序算法,且是不稳定的排序算法。
选择排序的 C++ 代码实现如下:
void SelectSort(int a[], int n){ for(int i=0; i<n; i++){ int minIndex = i; for(int j = i;j<n;j++){ if (a[j] < a[minIndex]) minIndex = j; } if (minIndex != i){ temp = a[i]; a[i] = a[minIndex]; a[minIndex] = temp; } } }
冒泡插入选择排序总结
这三种排序算法,实现代码都非常简单,对于小规模数据的排序,用起来非常高效。但是在大规模数据排序的时候,这个时间复杂度还是稍微有点高,所以更倾向于用时间复杂度为 O(nlogn)O(nlogn) 的排序算法。
特定算法是依赖特定的数据结构的。以上三种排序算法,都是基于数组实现的。
四,归并排序(Merge Sort)
归并排序的核心思想比较简单。如果要排序一个数组,我们先把数组从中间分成前后两部分,然后对前后两部分分别排序,再将排好序的两部分合并在一起,这样整个数组就都有序了。
归并排序使用的是分治思想。分治,顾名思义,就是分而治之,将一个大问题分解成小的子问题来解决。小的子问题解决了,大问题也就解决了。
分治思想和递归思想有些类似,分治算法一般用递归实现。分治是一种解决问题的处理思想,递归是一种编程技巧,这两者并不冲突。
知道了归并排序用的是分治思想,而分治思想一般用递归实现,接下来的重点就是如何用递归实现归并排序。写递归代码的技巧就是,分析问题得出递推公式,然后找到终止条件,最后将递推公式翻译成递归代码。所以,要想写出归并排序的代码,得先写出归并排序的递推公式。
递推公式: merge_sort(p…r) = merge(merge_sort(p…q), merge_sort(q+1…r)) 终止条件: p >= r 不用再继续分解,即区间数组元素为 1
归并排序的伪代码如下:
merge_sort(A, n){ merge_sort_c(A, 0, n-1) } merge_sort_c(A, p, r){ // 递归终止条件 if (p>=r) then return // 取 p、r 中间的位置为 q q = (p+r)/2 // 分治递归 merge_sort_c(A[p, q], p, q) merge_sort_c(A[q+1, r], q+1, r) // 将A[p...q]和A[q+1...r]合并为A[p...r] merge(A[p...r], A[p...q], A[q+1...r]) }
4.1,归并排序性能分析
1,归并排序是一个稳定的排序算法。分析:伪代码中 merge_sort_c() 函数只是分解问题并没有涉及移动元素和比较大小,真正的元素比较和数据移动在 merge() 函数部分。在合并过程中保证值相同的元素合并前后的顺序不变,归并排序排序就是一个稳定的排序算法。
2,归并排序的执行效率与要排序的原始数组的有序程度无关,所以其时间复杂度是非常稳定的,不管是最好情况、最坏情况,还是平均情况,时间复杂度都是 O(nlogn)O(nlogn)。分析:不仅递归求解的问题可以写成递推公式,递归代码的时间复杂度也可以写成递推公式:
3,空间复杂度是 O(n)。分析:递归代码的空间复杂度并不能像时间复杂度那样累加。尽管算法的每次合并操作都需要申请额外的内存空间,但在合并完成之后,临时开辟的内存空间就被释放掉了。在任意时刻,CPU 只会有一个函数在执行,也就只会有一个临时的内存空间在使用。临时内存空间最大也不会超过 n 个数据的大小,所以空间复杂度是 O(n)O(n)。
五,快速排序(Quicksort)
快排的思想是这样的:如果要排序数组中下标从 p 到 r 之间的一组数据,我们选择 p 到 r 之间的任意一个数据作为 pivot(分区点)。我们遍历 p 到 r 之间的数据,将小于 pivot 的放到左边,将大于 pivot 的放到右边,将 pivot 放到中间。经过这一步骤之后,数组 p 到 r 之间的数据就被分成了三个部分,前面 p 到 q-1 之间都是小于 pivot 的,中间是 pivot,后面的 q+1 到 r 之间是大于 pivot 的。
根据分治、递归的处理思想,我们可以用递归排序下标从 p 到 q-1 之间的数据和下标从 q+1 到 r 之间的数据,直到区间缩小为 1,就说明所有的数据都有序了。
递推公式如下:
递推公式: quick_sort(p,r) = quick_sort(p, q-1) + quick_sort(q, r) 终止条件: p >= r
归并排序和快速排序总结
归并排序和快速排序是两种稍微复杂的排序算法,它们用的都是分治的思想,代码都通过递归来实现,过程非常相似。理解归并排序的重点是理解递推公式和 merge() 合并函数。同理,理解快排的重点也是理解递推公式,还有 partition() 分区函数。
除了以上 5 种排序算法,还有 3 种时间复杂度是 O(n)O(n) 的线性排序算法:桶排序、计数排序、基数排序。这八种排序算法性能总结如下图:
参考资料
- 排序(上):为什么插入排序比冒泡排序更受欢迎?
- 排序(下):如何用快排思想在O(n)内查找第K大元素?

低调大师中文资讯倾力打造互联网数据资讯、行业资源、电子商务、移动互联网、网络营销平台。
持续更新报道IT业界、互联网、市场资讯、驱动更新,是最及时权威的产业资讯及硬件资讯报道平台。
转载内容版权归作者及来源网站所有,本站原创内容转载请注明来源。
- 上一篇
【ASPLOS 2023】图神经网络统一图算子抽象uGrapher,大幅提高计算性能
作者:周杨杰、沈雯婷 开篇 近日,阿里云机器学习平台PAI和上海交通大学冷静文老师团队合作的论文《图神经网络统一图算子抽象uGrapher》被ASPLOS 2023录取。 为了解决当前图神经网络中框架中不同的图算子在不同图数据上静态kernel的性能问题,uGrapher通过将所有图算子抽象为统一的中间表达形式,解耦图算子的计算和调度,并定义了在GPU上优化图算子的设计空间,以针动态变化的图算子和图数据自适应的生成并行执行策略,为图神经网络中的图算子提供高性能的计算支持。对比DGL [1], PyG[2], GNNAdvisor[3],uGrapher平均可以取得3.5倍的性能提升。 背景 近年来,图神经网络(Graph Neural Networks, GNNs)因其在非欧几里德空间中对图结构进行学习和推断的强大能力而受到学术界和产业界的广泛关注。GNNs将基于DNN的特征变换和基于图的操作结合起来,沿着图结构传播和聚合信息。现有的GNN框架如DGL和PyTorch-Geometric(PyG)扩展了DNN 框架(如TensorFlow 和PyTorch),并引入了“消息”这一概念,...
- 下一篇
自动调优工具AOE,让你的模型在昇腾平台上高效运行
摘要:当算子性能或者网络性能不佳时,可以使用AOE进行调优。本文就带大家了解自动调优工具AOE,让你的模型在昇腾平台上高效运行。 本文分享自华为云社区《自动调优工具AOE,让你的模型在昇腾平台上高效运行》,作者:昇腾CANN 。 什么是AOE? AOE(Ascend Optimization Engine)是一款自动调优工具,目的是为了充分利用有限的硬件资源,满足算子和整网的性能要求。 AOE通过生成调优策略、编译、在运行环境上验证的闭环反馈机制,不断迭代,最终得到最佳的调优策略,从而更充分利用硬件资源,提升网络的性能。 AOE的架构如下。 Application层:调优入口,支持如下。 AOE:这里的AOE表示AOE进程,是离线推理场景下的调优入口。 TFAdapter(TensorFlow Adapter):TensorFlow训练场景下的调优入口。 PyTorchAdapter(PyTorch Adapter):PyTorch训练场景下的调优入口。 Tuning层:调优模式,支持以下类型。 SGAT(SubGraph Auto Tuning):子图调优。一张完整的网络,会被拆分成...
相关文章
文章评论
共有0条评论来说两句吧...
文章二维码
点击排行
推荐阅读
最新文章
- 2048小游戏-低调大师作品
- Windows10,CentOS7,CentOS8安装MongoDB4.0.16
- SpringBoot2全家桶,快速入门学习开发网站教程
- Springboot2将连接池hikari替换为druid,体验最强大的数据库连接池
- Eclipse初始化配置,告别卡顿、闪退、编译时间过长
- Docker快速安装Oracle11G,搭建oracle11g学习环境
- SpringBoot2更换Tomcat为Jetty,小型站点的福音
- CentOS8,CentOS7,CentOS6编译安装Redis5.0.7
- CentOS7,8上快速安装Gitea,搭建Git服务器
- CentOS6,CentOS7官方镜像安装Oracle11G