低调大师

您现在的位置是: 首页 > Apache Ignite事务架构:并发模型和隔离级别

文章详情

Apache Ignite事务架构:并发模型和隔离级别

OsChina-博客 2018-3-1 16:58 3已围观 收藏 加入我们

在本系列的第一篇文章中,我们研究了2阶段提交协议,以及Ignite如何处理各种类型的集群节点,下面是在剩下的文章中要覆盖的主题:

  • 并发模型和隔离级别
  • 故障转移和恢复
  • Ignite持久化层中的事务处理(WAL、检查点及其他);
  • 第三方持久化中的事务处理

在本文中,我们会聚焦并发模型和隔离级别。 大多数现代多用户应用允许并发数据访问和修改。为了管理此功能,并确保系统从一个一致状态切换到另一个一致状态,使用了事务的概念。事务依赖于锁,它可以在事务开始时(悲观锁)获得,也可以在事务结束提交之前(乐观锁)获得。 Ignite支持两种并发模型:悲观乐观,下面先讲悲观并发模型。

悲观并发模型

悲观并发模型的一个例子是两个银行账户之间的转账,需要确保两个银行账户的借贷状态正确记录。这时需要给两个账户加锁来确保更新全部完成并且余额正确。 在悲观并发模型中,应用需要在事务开始时锁定即将要读、写或者修改的所有数据。Ignite还支持一组悲观并发模型的隔离级别,在读写数据时提供了灵活性:

  • 读提交
  • 可重复读
  • 序列化

在读提交模型中,锁是在写操作对数据进行任何改变之前获得的,比如put()或者putAll(),而可重复读以及序列化模型用于读写操作都需要获得锁的场景。Ignite还有些内置的功能,使得调试和解决分布式死锁问题更容易。

下面的代码示例展示了可重复读的悲观事务,因为应用需要对一个特定银行账户进行读和写的操作:

try (Transaction tx = Ignition.ignite().transactions().txStart(PESSIMISTIC, REPEATABLE_READ)) {
    Account acct = cache.get(acctId);

    assert acct != null;

    ...

    // Deposit into account.
    acct.update(amount);

    // Store updated account in cache.
    cache.put(acctId, acct);

    tx.commit();
}

本例中,通过txStart()和tx.commit()方法分别来进行事务的开启和提交。txStart()方法传递了PESSIMISTIC和REPEATABLE READ参数,在try块体中,代码在acctId键上执行了一个cache.get()操作,之后,一些资金存入账户并且缓存使用cache.put()进行了更新。

下面的代码示例展示了读提交并且带有死锁处理的悲观事务:

try (Transaction tx = ignite.transactions().txStart(TransactionConcurrency.PESSIMISTIC, TransactionIsolation.READ_COMMITTED, TX_TIMEOUT, 0)) {

    // More code here.

    tx.commit();
} catch (CacheException e) {
    if (e.getCause() instanceof TransactionTimeoutException &&
        e.getCause().getCause() instanceof TransactionDeadlockException)

        System.out.println(e.getCause().getCause().getMessage());
}

本例中,代码展示了如何使用Ignite的死锁检测机制,这简化了可能由应用代码导致的分布式死锁的调试。要开启这个特性,需要开启一个超时时间非0的Ignite事务(TX_TIMEOUT > 0),还需要捕获包含死锁详细信息的TransactionDeadlockException。

下面再看一下不同隔离级别的消息流,对于读提交,如图1所示,在这个隔离模型中,Ignite对于读操作不会获得锁,比如get()或者getAll(),这对很多场景可能更适合。

图1:读提交

  1. 事务开始(1 tx.Start);
  2. 事务协调器在内部管理事务请求(2 IgniteInternalTx);
  3. 应用写入键K1和K2(3 tx.putAll(K1-V1, K2-V2));
  4. 事务协调器将K1写入本地事务映射(4 Put(K1));
  5. 事务协调器向存储K1的主节点发起一个锁请求(5 lock(K1));
  6. 主节点在内部管理事务请求(6 IgniteInternalTx);
  7. 主节点向事务协调者发送一个已经准备好的确认(7 ACK);
  8. 对于K2重复如图1的4-7步骤;
  9. 发起事务提交请求(12 tx.commit);
  10. K1和K2写入相应的主节点(13 Write(K1)和13 Write(K2));
  11. 主节点确认事务提交(14 ACK);

下一步,看一下可重复读和序列化的消息流,如图2所示:

图2:可重复读和序列化

  1. 事务开始(1 tx.Start);
  2. 事务协调器在内部管理事务请求(2 IgniteInternalTx);
  3. 应用读取键K1和K2(3 tx.getAll(K1-V1, K2-V2));
  4. 事务协调器开始键K1的读请求处理(4 Get(K1));
  5. 事务协调器向存储K1的主节点发起一个锁请求(5 lock(K1));
  6. 主节点在内部管理事务请求(6 IgniteInternalTx);
  7. 主节点向事务协调者发送一个已经准备好的确认(7 ACK)并且返回K1的值;
  8. 对于K2重复如图2的4-7步骤;
  9. 应用写入K1和K2(12 tx.putAll(K1-V2, K2-V2));
  10. 事务协调器将K1的更新写入本地事务映射(13 Put(K1));
  11. 事务协调器将K2的更新写入本地事务映射(14 Put(K2));
  12. 发起事务提交请求(15 tx.commit);
  13. K1和K2写入相应的主节点(16 Write(K1)和16 Write(K2));
  14. 主节点确认事务提交(17 ACK);

总结一下,在悲观模型中,在事务完成之前锁一直持有,并且锁会阻止其他事务对数据的访问。 下一步看一下乐观并发模型。

乐观并发模型

乐观并发模型的一个例子是计算机辅助设计(CAD),这里一个设计师工作于整个设计的一部分,通常会将设计从中央仓库中检出到本地工作区,然后进行部分更新之后将成果检入中央仓库,因为设计师只负责整个设计的一部分,所以不可能与其他部分的更新产生冲突。

与悲观并发模型相反,乐观并发模型延迟了锁的获取,这样更适合于资源争用较少的应用,比如上面描述的CAD的例子。Ignite还支持一些乐观并发模型的隔离级别,这提供了读写数据方面的灵活性:

  • 读提交
  • 可重复读
  • 序列化(无死锁

回顾一下前文中关于2阶段提交中各个阶段的讨论,当使用乐观并发模型时,在准备阶段,锁是在主节点获取的。在使用序列化模式时,如果通过事务请求的数据已经改变,在准备阶段事务会失败。这时,开发者需要编程控制应用的行为,即是否需要重启事务。而其他的两个模式,可重复读和读提交,不会检查数据是否改变。虽然这会带来性能方面的好处,但是没有了数据的原子性保证,因此,这两个模式在生产中很少用到。

下面的代码示例展示了序列化的乐观事务,因为应用需要对一个特定银行账户进行读和写的操作:

while (true) {
    try (Transaction tx = ignite.transactions().txStart(TransactionConcurrency.OPTIMISTIC, TransactionIsolation.SERIALIZABLE)) {

        Account acct = cache.get(acctId);

        assert acct != null;

        ...

        // Deposit into account.
        acct.update(amount);

        // Store updated account in cache.
        cache.put(acctId, acct);

        tx.commit();

        // Transaction succeeded. Exiting the loop.
        break;
    } catch (TransactionOptimisticException e) {
        // Transaction has failed. Retry.
    }
}

本例中,在外侧有个while循环,判断事务是否失败,它可以重试。下一步,有txStart()和tx.commit()方法,分别用于事务的开始和提交。txStart()方法传递了OPTIMISTIC和SERIALIZABLE参数,在try块体中,代码先在acctId键上执行了cache.get()操作,之后,一些资金存入账户并且缓存使用cache.put()进行了更新。如果事务成功,代码会从循环中中断,如果事务不成功,会抛出异常然后事务重试。对于乐观的序列化事务,访问键的顺序不受限制,因为Ignite为了避免死锁,事务锁是通过一个额外的检查并行地获得的。

下面看一下不同隔离级别下的消息流,先从序列化开始,如图3所示:

图3:序列化

  1. 事务开始(1 tx.Start);
  2. 事务协调器在内部管理事务请求(2 IgniteInternalTx);
  3. 应用写入键K1(3 tx.put(K1-V1));
  4. 事务协调器将K1写入本地事务映射(4 Put(K1));
  5. 应用写入键K2(5 tx.put(K2-V2));
  6. 事务协调器将K2写入本地事务映射(6 Put(K2));
  7. 发起事务提交请求(7 tx.commit);
  8. 事务协调器向存储K1和K2的主节点发起锁请求(8 lock(K1, TV1) and 8 lock(K2, TV1));
  9. 主节点在内部管理事务请求(9 IgniteInternalTx);
  10. 主节点向事务协调者发送一个已经准备好的确认(10 ACK);
  11. K1和K2写入相应的主节点(11 Write(K1)和11 Write(K2));
  12. 如果没有数据冲突(即K1和K2没有被其他的应用更新),主节点确认事务提交(12 ACK)。

最后,看一下可重复读和读提交的消息流,如图4所示:

图4:可重复读和读提交

  1. 事务开始(1 tx.Start);
  2. 事务协调器在内部管理事务请求(2 IgniteInternalTx);
  3. 应用写入键K1(3 tx.put(K1-V1));
  4. 事务协调器将K1写入本地事务映射(4 Put(K1));
  5. 应用写入键K2(5 tx.put(K2-V2));
  6. 事务协调器将K2写入本地事务映射(6 Put(K2));
  7. 发起事务提交请求(7 tx.commit);
  8. 事务协调器向存储K1和K2的主节点发起锁请求(8 lock(K1, TV1) and 8 lock(K2, TV1));
  9. 主节点向事务协调者发送一个已经准备好的确认(9 ACK);
  10. K1和K2写入相应的主节点(10 Write(K1)和10 Write(K2));
  11. 主节点在内部管理事务请求(11 IgniteInternalTx);
  12. 主节点确认事务提交(12 ACK)。

总结

在本文中,研究了Ignite支持的主要的锁模型和隔离级别,我们看到,有很大的灵活性和选择空间,本系列的后面文章中,会研究故障转移和恢复。

本文译自GridGain技术布道师Akmal B. Chaudhri的博客

文章转载至:https://my.oschina.net/liyuj/blog/1627248
收藏 (0)

文章评论

共有0条评论来说两句吧...